A1 – Classification algorithms

Description

In this assignment you shall classify two datasets, Spiral and Diabetes, using machine learning algorithms. You shall present and explain your code in an oral examination.

Development environment

See the Development environment page.

Submission instructions

See the Deadlines and Submissions page.

Requirements

  • Write code (you are not allowed to use a GUI that is available in for example Weka) for classifying the two datasets Spiral and Diabetes (see the Datasets page)
  • You can choose between the following machine learning libraries: Weka (Java), Scikit-learn (Python) or Caret (R)
  • Classify each dataset with at least three algorithms of your choice, using either cross-validation or train-test split
  • Each result shall be presented with accuracy score and confusion matrix


You can verify that your results are correct by testing the dataset in Web ML Experimenter, a web-based machine learning tool. Note that the results for cross-validation and train-test split can differ slightly due to random differences in how the dataset is split, but they should be approximately similar.

Getting started

Here are some useful guides to get you started.

Scikit-learn:


Weka:


R:

If you need help

Ask questions in the Slack channel or contact the main instructor to book an online meeting.

Welcome to CoursePress

en utav Linnéuniversitets lärplattformar. Som inloggad student kan du kommunicera, hålla koll på dina kurser och mycket mer. Du som är gäst kan nå de flesta kurser och dess innehåll utan att logga in.

Läs mer lärplattformar vid Linnéuniversitetet

Student account

To log in you need a student account at Linnaeus University.

Read more about collecting your account

Log in LNU