
LINNAEUS
UNIVERSITY
SUMMER 2024

INTRO TO COMUPTER
SCIENCE
SUMMER COURSE

EXERCISES

2

Write a Markdown document. This document will include questions for self-reflection, as
well as some questions from the topics covered in this course. It will also include specific
formatting requirements.
Just 1-2 sentences per question is enough—the goal is to get you thinking, not writing
essays! 😊 No need to feel pressured to write more than that.

 Headings
At least two levels of headings (e.g., # for main headings and ## for subheadings)
to organize the content.

Code Blocks
 Demonstrate how to create a code block to display code snippets. You can write
anything you want in this code block.

Lists
 Include an ordered list with at least 2 items.
 Include an unordered list with at least 2 items.

Links
 Create a hyperlink to a website of your choice.

Emphasis and Bold
Use italics and bold formatting to highlight specific text within the document.

Emoji
Add an emoji of your choice! 🚀

Table
Create a simple table. 2x2 row and column is enough, but feel free to add more
rows/columns if you want! You can write anything you want in the table.

WEEK 1
ASSIGNMENTS

ASSIGNMENT 1 -
MARKDOWN DOCUMENT

MARKDOWN DOCUMENT - FORMATTING REQUIREMENTS

What is your previous experience with computers, computer science and code? For
example, have you never really had an interest before? Are you a gamer who has modded
games? Have you tried coding a little?
What made you interested in coding and decide to go to school to learn programming?
What technology did you grow up with? Did you experience the world before Google and
smartphones? If not, how do you think finishing it might have been different from
navigating daily life without instant access to services, information, and
communication?
How does technology impact you positively, as well as negatively?
Have you ever thought about how your personal data is used by companies? How do you
feel about the way big data shapes your online experiences?
Have you tried using ChatGPT or other generative AI tools in your work or hobbies? How
did they help or change the way you approach tasks?
Do you see code as logic or communication? What might be the benefit of each
perspective?
What mental skills listed in “Programming Mentality” do you find challenging? Write one
actionable way to improve in that area!
What did you expect from this course?
Did you learn what you thought you would during this course? If not, what would you
have wanted to be different?
What did you enjoy most about this course, and what would you have liked to see more
of?
Check Your Disk Type - Use your computer’s disk management tool (e.g., Disk
Management on Windows or Disk Utility on macOS) to check your disk type (HDD or SSD)
and write it in the document (tip is to use the table for this!)
Look up how to find your computer’s specifications. What operating system is it running
on? What type of processor do you have?
Optional: Write the non-sensitive computer specifications of your machine in your
Markdown document. Processor, RAM, OS system version, and System Type are safe to
share - they cannot be used to identify your machine or derive sensitive information that
could be used maliciously. Write them out on a table

PLEASE DO NOT GIVE OUT ANY SENSITIVE INFORMATION. Here is a breakdown of what
could be considered sensitive when sharing device specifications. Always be cautious
with sharing details that could uniquely identify or compromise your device’s security.

SOFTWARE- Safe to Share: OS Version, Build Number, System Type (32-bit/64-bit)
 Avoid Sharing: Device Name, Product ID, Product Key.

HARDWARE - Safe to Share: Device Name, Processor, Installed RAM, System Type, Pen
and Touch. Avoid Sharing: Device ID, Product ID

MARKDOWN DOCUMENT - QUESTIONS

3

Task Manager/Activity Monitor- Open Task Manager (Windows) or Activity Monitor
(macOS). Locate the CPU usage. Observe which processes are consuming the most CPU
resources. Also, check the current RAM usage. Note which applications are using the
most memory.

Ask a question on Slack related to IT / programming that you might be struggling with.
Ask ChatGPT a question related to IT / programming that you might be struggling with.

ASSIGNMENT 2 - BREAK THE ICE

ASSIGNMENT 3 - HARDWARE /
SOFTWARE

4

Follow each of the tutorials “Terminal” and “File Systems” (available on the course site
under Week 2).

WEEK 2
ASSIGNMENTS

ASSIGNMENT 1 -
FOLLOWING TUTORIALS

5

Install Node.js and npm from the official node.js website.
npm should be included in the node.js installation. You’ll see two versions of node.js
available: LTS (Long-Term Support) and the current version. Choose the current
version - look for: “Want new features sooner?” on the site, and you should find a
version that looks something like this: “Node.js v22.6.01 “. That’s the one you want.
(For most users, the LTS version is recommended for code that will be used in live
applications. However, during school they will recommend the current version so you
can have access to new features).

Verify the installation:
Open Git Bash and run:
```node -v``` to check the Node.js version.
```npm -v``` to check the npm version.

ASSIGNMENT 2 -
DOWNLOAD NODE.JS AND NPM

https://nodejs.org/dist/v22.6.0/node-v22.6.0-x64.msi

Open Git Bash and navigate to the desktop folder using Git Bash and text commands.
Create a directory. Use Git Bash to create a directory - google /ask Chat GPT how to find
the command to create a directory using Git Bash.
Check that the directory is created. Google/ask Chat GPT how to find the command to
view the contents of the current working directory.
Create a file using GUI. Using the graphical user interface (using your mouse/keyboard
and double-clicking) navigate into your newly created directory and create a .txt file.
Add some text to the file and save the .txt file.
View .txt file contents using Git Bash.

Use Git Bash to navigate into the directory you just created.
Check that the .txt file you created is present - use the text command that lets you
view the contents of the current working directory to verify that the .txt file is there.

Find the absolute file path of your .txt file. Either google/ask Chat GPT how to do it in
the terminal, or use your OS’s GUI to look up the file path. The path should be from the
root of your filesystem.

On Windows, the root directory is represented by the drive letter followed by a
backslash. For example, C:\ is the root directory of the C: drive.
On macOS and other Unix-like systems, the root directory is represented by a single
forward slash /.

View the contents of your text file. Use the command ```cat yourfilename.txt``` in Git
Bash.
Delete the file using Git Bash. Use the command ```rm yourfilename.txt```
View the contents of the current working directory again (the .txt file should be gone).
Navigate out. Move out of the directory in the terminal, to your desktop folder.
Delete directory - remove the directory you created earlier using the command
```rmdir yourdirectoryname```
Use the text command in Git Bash to  view the contents of the desktop folder.
The directory you created should be gone.

ASSIGNMENT 3 - 
NAVIGATION AND FILE OPERATIONS 

6



Go to Replit, log in, and create a new Repl. Select the programming language you want to
use (e.g., JavaScript).
Use console.log() to write your first "Hello, World!"
Click the "Run" button to execute your program.
View the output

WEEK 3
ASSIGNMENTS

ASSIGNMENT 1 - HELLO, WORLD!

1 - Declaring and assigning values
Go to Replit, log in, and create a new Repl. Select the programming language you want to
use (e.g., JavaScript).

Declare a Variable in the code editor - create a variable in your code using a keyword
such as let, const, or var.

On a separate line of code, assign a value to the variable.

Print or display the value of the variable using console.log(). For example: 

                ```let age = 18
 console.log(age)```

Reassign the same variable, giving it a new value.

Use console.log() to print the updated value of the variable, then run the code to print
the value again.

ASSIGNMENT 2 - VARIABLES,
DATATYPES AND IF-STATEMENTS

7

2 - Datatypes and typeof
Initialize 3 new variables - 1 boolean (true/false), 1 string, 1 number.

String is a collection of characters - essentially, any text.
“Hello” is a string, as is “ “ and “Hi, there, coders!!! :)”
If you want to combine a string with a variable in the console log(), this is how:

Use ```console.log(variableName)``` to print the value of each of the variables.

Use the command ```typeof variableName``` on each of the variables inside a
console.log() - between the brackets. This will output their data type.

8

 3 - If statements
Write an if statement for each variable.

NOTE!
Using one = assigns a value to a
variable. Using two == checks it
two different values are equal.

For easy if-statements, use:

Equality Operator == (compares two values to determine if they are equal)
Relational Operators >< (compares two values)

Greater Than (>): Checks if the value on the left is greater than the value on the right.
Less Than (<): Checks if the value on the left is less than the value on the right.

9

Download VSCode.
Download ANY extension in VSCode. One recommendation is Dracula - it’s a theme that
changes the colors of the UI. Feel free to choose any theme or extension you like! If
you're unsure which one to start with, a theme is a great option.

Create a directory on your computer. Name it "Local_To_GitHub".

Create a new project in VSCode. Open VSCode, and open the “Local_To_GitHub” folder
when prompted Open folder... This will be the root folder of your project.

 Create a new folder in your VSCode project “Local_To_GitHub”. (Make sure to create it
inside the “Local_To_GitHub” folder).

Create a .md file in the folder “Local_To_GitHub”.

Create a link to your another file in your project(what the file is doesn’t matter) and
write a link to it in the Markdown file you just create in the previous step.

Practice how to link to files using the relative path!

ASSIGNMENT 3 -
VSCODE & GIT

10

It should look something like this:

11

WEEK 4
ASSIGNMENTS

ASSIGNMENT 1 - MINI CALCULATOR

12

1 - Basic math function
Go to Replit, log in, and create a new Repl. Select the programming language you want to
use (e.g., JavaScript).

Write a Function:
Create a function that performs a basic mathematical operation, such as adding two
numbers together.

Make Two Function Calls:
Call the function twice with different sets of numbers and print the results to the
console.

Save and Print the Result:
Create a variable, and store the result of another function call in the variable.

Print this variable to the console.

2 - Function with two parameters
Write a Function with Two Parameters:
Create a function that performs a mathematical operation using two parameters and
division.

Call the Function with Different Values:
Call this function once with two different sets of values (such as 20 and 5) as arguments
and print the results.

Swap the values around in another function call to observe the effect and print the
result. (This is to notice that switching the parameters affects the result of the
operation, as division is order-sensitive!)

4 - Check if a number is positive or negative
Define the Function:
Create a function that accepts a single number as its parameter.

Check the Number:
Use an if statement to determine if the number is greater than 0. If it is, the function
should return the result "Positive".

Use an else if statement (google!) to check if the number is less than 0. If it is, the
function should return the result "Negative".

If the number is neither greater than nor less than 0, it must be equal to 0. In this case,
return the result "Zero".

Return the Result:

Ensure the function returns a string indicating whether the number is positive, negative,
or zero based on the checks performed.

3 - Calculate the area of a rectangle
Write a Function to Calculate Area:
Create a function that calculates the area of a rectangle given its width and height.

Print the Result:
Call the function with specific width and height values and print the resulting area to the
console.

BONUS & OPTIONAL
(BUT GOOD PRACTICE)

HINT

13

5 - Compare two numbers and return the larger one
Define the Function:
Create a function that accepts two numbers as parameters.

Compare the Numbers:
Use an if statement to compare the two numbers. If the first number is greater than the
second, the function should return the first number.

Use an else if statement to check if the second number is greater than the first. If it is,
return the second number.

If neither number is greater (meaning the two numbers are equal), return the result
"Both numbers are equal".

Return the Result:
Ensure the function returns the larger number or a message indicating that both
numbers are equal, based on the comparisons.

HINT

14

In this assignment, you will learn how to find the IP address of a website (Google in this
case) using the command line.

Open GitBash
Find the IP Address of Google:

In the Git Bash terminal, enter the following command

          ```ping google.com```

After executing the command, you will see output similar to this:

```$ ping google.com PING google.com (142.250.190.14): 56 data bytes 64 bytes from
142.250.190.14: icmp_seq=0 ttl=115 time=15.3 ms 64 bytes from 142.250.190.14:
icmp_seq=1 ttl=115 time=15.2 ms 64 bytes from 142.250.190.14: icmp_seq=2 ttl=115
time=14.9 ms 64 bytes from 142.250.190.14: icmp_seq=3 ttl=115 time=15.1 ms 64 bytes
from 142.250.190.14: icmp_seq=4 ttl=115 time=15.0 ms --- google.com ping statistics --
- 5 packets transmitted, 5 packets received, 0% packet loss round-trip
min/avg/max/stddev = 14.9/15.1/15.3/0.1 ms```

The output starts with PING google.com (142.250.190.14), indicating that the IP address of
Google is 142.250.190.14.

ASSIGNMENT 2 -
 PINGING AN IP ADDRESS

15

