
DEEP DIVE INTO CODE -
FUNCTIONS

WEEK 4 - PART 1

LINNAEUS
UNIVERSITY
SUMMER 2024

TABLE OF
CONTENTS

3 what is a
function?

returns

calling a function

how functions work

keywords in code

the anatomy of a function

keywords in javascript

functions in math &
coding

jumping in code when
doing a function call

4

6

5

5

9

12

6 components of a
function
structure & declaring a
function

modularity &
reusability

18

16

coding -
examples & how
to

examples 18

19

20

20

Let's define our "smoothie-making" function as:

makeSmoothie(fruit, liquid, sweetener)

Parameter 1: fruit - The type of fruit you add (e.g., "banana", "strawberry").
Parameter 2: liquid - The liquid base you use (e.g., "milk", "orange juice").
Parameter 3: sweetener - The sweetener you choose (e.g., "honey", "sugar").

The important part here, is that you can switch out “fruit”, “liquid” and
“sweetener”, but still perform the same instructions and yield a result.
Unless you input the same details, each smoothie will be different, while still
keeping to the basic instruction given - the “formula” and still performing
the same instructions.

WHAT IS
A FUNCTION?

In programming, a function is a set of operations that takes one or more
inputs (parameters) and produces a result - performing operations on
inputs to produce outputs.
Functions group instructions together, and parameters - input - enable
dynamic ways of performing those instructions with varying data that is
used. In programming, functions allow you to group a series of instructions
and reuse them with different inputs.

Imagine you make a smoothie every
morning. The recipe is flexible, so you can
change the ingredients based on what
you have or what you feel like that day
(for example, instead specifying that you
have a banana everyday in your smoothie,
just just say “fruit”, encompassing any
fruit you chose).

In this scenario, the function is like the
process of making the smoothie. The
input is the ingredients you decide to use,
and the output is the smoothie itself.

3

4

Scenario 1
Input: You choose a banana, milk, and honey.
Process: The function blends these ingredients.
Output: You get a banana smoothie with milk and honey.

Scenario 2
Input: You choose strawberries, orange juice, and no sweetener.
Process: The function blends these ingredients.
Output: You get a strawberry smoothie with orange juice.

Scenario 3
Input: You choose mango, coconut water, and sugar.
Process: The function blends these ingredients.
Output: You get a mango smoothie with coconut water and sugar.

If you put in different fruits, liquids, or
sweeteners, you get a different smoothie.
BUT, the smoothie function repeats the same
process (blending), just with different
ingredients.

 The result (the smoothie) changes because the inputs are different, but the
instructions remain the same. This allows use to reuse the instructions while
being able to switch out the inputs.

HOW FUNCTIONS WORK
The function makeSmoothie(fruit, liquid, sweetener) will blend
together whatever ingredients you choose:

5

the 'x' serves as a parameter, allowing the formula to be applied to various
input values.
The formula takes an input value 'x', multiplies it by 2, and then adds 3 to the
result. For instance, if we substitute x = 5 into the function, we get
f(5) = 2 * 5 + 3 = 13
If we substitute x = 10 into the function, we get
f(10) = 2 * 10 + 3 = 23
Here, 'x' serves as the parameter of the mathematical function, allowing us
to generalize the formula for various values of 'x'.

In programming, functions follow the same blueprint -
functions group instructions together, and parameters enable dynamic
input. For example, a JavaScript function
calculateF(x)
takes an input parameter 'x', and produces a result.
Just like in the smoothie example, you can have many parameters in a
function.

makeSmoothie(fruit, liquid, sweetener)

In programming, keywords are reserved words that have a predefined
meanings in the language’s syntax, and are used to perform specific
functions or to define the structure of the code.

Keywords are reserved by the programming language - you cannot use
these words as identifiers (names for variables, functions, etc.). They help in
defining the rules for writing code, such as how to create functions or
declare variables. Different programming languages have different sets of
keywords. For example, JavaScript, Python, and Java all have their own sets
of keywords that serve similar or different purposes.

FUNCTIONS IN MATH & CODING
In math a function is a set of operations (instructions) that takes one or
more inputs (parameters) and produces a result.
In a math function like
f(x) = 2x + 3

KEYWORDS IN CODE

A FUNCTION

6

COMPONENTS OF

Functions need to be declared - this involves defining its structure, logic,
and parameters.

When declaring a function, no code is run - you as the programmer are
providing the instructions as a “reference” for the computer. The
declaration can be compared to the smoothie recipe - no smoothie is made,
but the instructions for how to make the smoothie are provided.

The function keyword is used to create a function, which is a block of
reusable code that performs a specific task. The keyword tells JavaScript
you’re declaring a function - you start with the function keyword, followed
by the name of the function, a set of parentheses (), and a set of curly
braces {} that marks the end of the function’s code.

The function must have a name - you as the programmer name this yourself,
something that describes what the code does. To continue the smoothie
analogy - this would be the name of the smoothie.

The computer has to know when the start and end of the instructions is.
Different programming languages might do this differently, but the most
common is to use { and } to define the start and end of a function.

STRUCTURE & DECLARING A
FUNCTION

function functionName(parameters) {
 // Code to be executed
}

Within these braces {} is the set of instructions that make up the function's
logic. In essence, here is where the step by step recipe to make our smoothie
is written - the instructions, what order to perform then in, and how to use
each ingredient. Within these braces, you can manipulate the parameters
(the input - our recipe ingredients) and perform operations (instructions -
blend, smash, juice, pour) to produce the desired result (delicious
smoothie).

Function don’t HAVE to have parameters - it
is is strictly based on the use-case and what
the function is meant to do.
Here we use parameters to demonstrate
how they work.

If there are no parameters in the function
declaration, you simply don’t need to
provide any input for the function to run.

A function can have parameters - the swappable place holder “fruit”,
“liquid” and “sweetener” are parameters, housed between the parenthesis
().

These are like empty placeholders or labels that represent the data that will
be sent in to the function - or, as programmers commonly say, passed into
the function.

7

Python uses indentations - a set amount of spaces - to define
when a function begins and ends.

In JavaScript, the curly braces {} define the scope of the function
- meaning, when the function ends and begins.
In our smoothie metaphor, this could be the page it is printed on - the
end and beginning of the instructions.

Example
f(x) = 8 + 3

The result will be the same, no matter what you set as X.

8

When you actually use the function, you replace these placeholders with
the actual, real values that are relevant for the specific situation—like the
specific ingredients for that particular smoothie.
To explain further, if a function had the parameters (clothes, shoes, jewelry),
you might pass in (pants, boots, ring).
These specific, “real” values that you provide when using the function are
called arguments.
Inside the function, you can do things like declare new variables, perform
if statements, and carry out various operations to process the arguments
and produce the desired output.

Variables created within the function does not exist outside the function. If
you wrote

let proteinpowder = “chocolate protein powder”

then the variable proteinpowder would not be accessible to any code
outside of the {}.

When a variable is declared inside a function, it is considered a
local variable. This means that it can only be accessed within that function.
Once the function finishes executing, the local variable is no longer available,
often being described as the variable being "alive" only during the execution
of the function.

This helps prevent accidental interference with variables outside of the
function and keeps the function self-contained.

Remember, the declaration of a variable does not actually run any code— it
simply provides a blueprint, or recipe for how to execute instructions
Asking the computer to execute the function is called calling a function.

Parameters act as placeholders for the actual ingredients that
you will provide later when you use the function. These
placeholders help the function know what kind of data it will

 work with, but they aren't actual data themselves. When we define the
function, we don't know exactly what the values will be yet, so we use
these placeholder labels.

9

When you define a function, it doesn't do anything on its own until it's
called by some other part of the program.

"The function's caller" refers to the part of the code that instructs the
function to run. Calling a function is like asking the computer to perform
the specific task that you've defined beforehand in the function
declaration. When you call a function, you're telling the program to execute
the set of instructions inside that function.

To call a function, you use its name followed by parentheses (). The
parentheses can also include arguments if the function requires them.

For example, if you have a function called greetUser, which is designed to
print a greeting, you would call it by simply writing its name followed by
parentheses like this: greetUser().
This action tells the program to jump to that function declaration, no
matter where in the code it is called and run the code inside the
declaration.

Once the computer is done running the code inside the function, the
computer returns to where it left off and continues to execute the code
sequentially.

When writing the function call, any parameters specified in the function
declaration need to be substituted by arguments - the actual values that
you pass into a function when you call it.

CALLING A FUNCTION

makeSmoothie(mango, milk, sugar)

10

These arguments correspond to the function's
parameters - the placeholders defined when the
function is created. When you call the function and
provide arguments, those values are assigned to the corresponding
parameters, and the function uses them to perform its operations.
Every time the function is called, the arguments get swapped in for any
parameters written INSIDE the function. Whenever the function is called,
the specific arguments are used in the function.

FUNCTION DECLERATION

FUNCTION CALL

function makeSmoothie(fruit, liquid, sweetener) {
Blend fruit, liquid, sweetener together.
}

makeSmoothie(mango, coconutmilk, sugar)
// Swaps out fruit for mango, coconutmilk for liquid and
sugar for sweetener.

makeSmoothie(strawberry, milk, sugar)
// Swaps out fruit for strawberry, milk for liquid and sugar
for sweetener.

11

When we say you can manipulate parameters, we mean that
you can use them in calculations, modify them, or apply logic
to them to achieve the desired outcome.
Parameters can be used directly in mathematical operations.

 For instance, if a function takes width and height as parameters, you can
use them to calculate the area of a rectangle.

You can use parameters to make decisions or apply conditions. For example,
you might want to check if the quantity of items exceeds a certain number
and apply a discount accordingly. Inside the function, you can create new
variables based on the parameters and use these new variables in further
operations.

function exampleFunction(param1, param2) {
console.log(param1, param2)
}

exampleFunction(10, 20) // Outputs: 10 20

function calculateRectangleArea(length, width) {
// Create new variables based on the parameters
// Calculate the area using length and width
let area = length * width;

// Calculate the perimeter
let perimeter = 2 * (length + width);

// Use these variables
console.log("Area:", area);
console.log("Perimeter:", perimeter)
}

// Output:// Area: 15// Perimeter: 16

12

RETURNS
Imagine you want to create a function that calculates the total cost
of a smoothie based on the cost of its ingredients.

Here’s a function named calculateSmoothieCost that takes three
parameters: fruitCost, liquidCost, and sweetenerCost. This function
calculates the total cost by summing up these costs.

Inside the braces {}, we use the parameters fruitCost, liquidCost, and
sweetenerCost to calculate the total cost of the smoothie. The totalCost
variable is created to store the result of this addition.

When you write a function in programming, you often want it to perform a
task and then give back a result. The return statement is a crucial part of
this process. It’s like the function’s way of sending a value back to where it
was called from, marking the end of its execution.
The function returns the calculated totalCost, which is the final result of
the operations performed inside the function.

function calculateSmoothieCost(fruitCost, liquidCost, sweetenerCost) {
 // Calculate the total cost by summing up the costs
let totalCost = fruitCost + liquidCost + sweetenerCost
return totaltCost
}

let smoothieCost = calculateSmoothieCost(5, 30, 10)
console.log("This smoothie costs “ + smoothieCost + ” kr”);
// Output: This smoothie costs 45 kr.

13

The function calculateSmoothieCost is called with the
arguments 5, 30 and 10.
The function calculates the sum, which is 45, and returns this value.

The smoothieCost variable saves the return value of 45.
Now, the result of the function is stored in the variable, and you can use it in
the rest of your code - here we used it for a console.log()
When you use the return statement, you specify the value that should be
sent back to the caller. The functions only returns what is written after the
word return, in this case, totalCost.

The return statement immediately stops the function’s execution - no
matter where in the function it is written. If the return statement is placed as
the very first line of code in a function, the function will immediately return
the specified value and stop executing any remaining code in that function.

This means that the computer will not process or reach any of the code
written after the return statement - the code that appears after this
statement is effectively ignore.

You can also use a return statement by itself to stop the function from
running any further. When you use return without specifying a value, it
immediately exits the function and stops any code that follows from being
executed. Control is then handed back to the part of the program where
the function was called, and the program continues executing the
subsequent lines of code from that point onward.

function exampleFunction(x, y) {
let sum
return

sum = x+y //this gets ignored, the code has jumped out of the function
}

14

When you use return without a value, the function will still
return undefined. In JavaScript, undefined is a special value
that indicates the absence of a value. This is essentially the
default return value when no explicit value is provided.

 This happens only if you use return without specifying a return value, and
store the result of the function in a variable. If you don’t store the result of
the function in a variable when using return without a return value, the
function simply stops executing and the program picks up where it left of.

If a function uses the return statement and the result of the function call is
not stored in a variable, the function still performs its task and returns a
value. However, that returned value is not saved or used in any way.

If you do not store the return value in a variable or use it in any way, it gets
effectively discarded. The function performs its task, but you don’t save or
make use of the result.

function calculateSmoothieCost(fruitCost, liquidCost, sweetenerCost) {
 // Calculate the total cost by summing up the costs
let totalCost = fruitCost + liquidCost + sweetenerCost

return totaltCost
}
//Calling the function without storing the result of the return
calculateSmoothieCost(25, 40,5)

If a function does not include a return
statement, it performs its task but does
not send any value back to the caller.

The function prints a greeting to the
console but does not return any value.
Calling printGreeting("Alice")
will display "Hello, Alice!" but there is no
value to save use elsewhere in the code.

The instructions in the functions are still performed - but since the return
statement is not used, there is no result to store anywhere and reuse.

15

Since we don’t store this returned value or use it in any way, the
result 70 is effectively discarded. The function performs its
calculation, but there’s no record of the result.

The returned value is lost if it’s not stored, and you won’t be able to use
it later in your program.

This can also be helpful. Say you want to exit a function early based on
certain conditions. For example, if you’re checking if a user’s input is valid
and it’s not, you might want to stop further processing, allowing you to exit
a function early when certain conditions are not met and preventing
unnecessary processing. Imagine you have a function that makes a
smoothie, but you need to check if all the ingredients are there before
starting. If any ingredient is missing, you want to stop the function and avoid
making the smoothie.

function printGreeting(name) {

 console.log("Hello, " + name + "!")

}

Then, you have a function called
addSweetener(). This function
decides what type of sweetener, if
any, you want to add—like honey,
sugar, or agave syrup.

You have a function called chooseFruit().
This function’s sole job is to pick the type of
fruit for the smoothie. You can choose
bananas, strawberries, or any other fruit
you like.

16

MODULARITY &

Functions are essential for organizing code into reusable and modular
components. When we say that a function is modular, we mean that it
handles one specific task, making it a small, self-contained and
independent part of a larger system. This is like breaking down a complex
recipe into simple, clear steps that are easy to follow.
These parts can be developed and maintained independently of one
another, not affecting the rest of the program.

Imagine you want to make a smoothie, but instead of treating the entire
process as one big task, you break it down into smaller, manageable steps.

Another function, selectLiquid(), is
responsible for choosing the liquid.
This could be milk, orange juice, or even
water. Again, this function only handles
this one specific choice.

REUSABILITY

17

Now, let’s talk about reusability - this is where the true
power of functions shines.
Once you’ve created these small, modular functions, you
don’t need to rewrite them every time you want to make a
smoothie. Instead, you can reuse them, simply by providing
different inputs (arguments) to create different smoothies.

For modular code, one could use functions like
chooseFruit(), selectLiquid(), and addSweetener() to break
down the process into manageable, reusable components.
This modular approach makes the code more flexible and
easier to maintain. Finally, blendSmoothie() can combine
these elements to complete the smoothie-making process.

This saves you time and effort, as you don’t need to rewrite or duplicate
code. You just use the functions you’ve already built, adjusting the inputs
to get the exact smoothie you want

Suppose you want to control a light based on whether it's day
or night.
The condition you're checking is whether it’s daytime or
nighttime.

makeSmoothie(mango, coconutmilk, sugar)
makeSmoothie(strawberry, milk, sugar)
makeSmoothie(banana, condensedmilk, caramelSauce)
makeSmoothie(banana, milk, maplesyrup)
makeSmoothie(strawberry, vanillasoymilk, agavesuryp)

18

CODING -
EXAMPLES & HOW TO

EXAMPLES

19

JUMPING IN CODE WHEN
DOING A FUNCTION CALL

CODING -
EXAMPLES & HOW TO

20

THE ANATOMY OF A
FUNCTION

KEYWORDS IN JAVASCRIPT

CODING -
EXAMPLES & HOW TO

function Used to declare a function.
return Used to return a value from a function.
var, let, const Used to declare variables.

