
CODER'S TOOLKIT-
TERMINAL, FILE SYSTEMS &
VERSION CONTROL

WEEK 2 - PART 2

LINNAEUS
UNIVERSITY
SUMMER 2024

TABLE OF
CONTENTS

3

4

6

what are basics
for coders?

essentials - the
terminal & shell

terminal and shell
applications

PowerShell

comparing terminals

Bash

GitBash

what is a file?

macOS’s Terminal
Windows Command Prompt

file systems -
organizing & storing
data

files - metadata &
attributes

types of file paths
absolute path
relative path

running scripts &
commands

file operations-
read, write,
execute, delete

access, permissions
& user roles

file ownership

9

10

9

11

12

what is a directory?

9 files and file
systems - a guide

Understanding
version control & git

glossary & visual
explenations

what is version
control?

version control
features

local operations &
version control

repositories

cloud-
GitHub & GitLab

branches
merging
conflicts

commits

24

33

file types

root directory & hierarchy 13

13

7

19

17

4

27
28
29
30

27

17

5

17

5

30

7

21

22

24

25

26

8

20

file paths

In the world of software development, proficiency with the terminal, a
clear understanding of file systems, and mastery of version control
systems are foundational skills.

WHAT ARE
BASICS FOR CODERS

3

The terminal provides a
powerful interface for
executing commands,
automating tasks, and
managing systems efficiently.

A solid grasp of file systems
and directory structures is
essential for programmers
because it directly influences
how they interact with files and
resources within their projects.

Understanding file paths and how to navigate folders using the terminal
allows developers to efficiently manage and access code, configuration
files, and other assets.

This knowledge is crucial when linking file paths in code, setting up
environment configurations, and deploying applications.
For instance, being able to reference files correctly in scripts and
configuration files ensures that your code functions as intended, whether
it's locating a library, loading data, or executing a build process.

Meanwhile, version control systems like Git are indispensable for tracking
code changes, facilitating collaboration, and maintaining a historical
record of modifications, ensuring that developers can manage and restore
their work with ease.

These are fundamental skills for any programmer, as they provide the
essential foundation for managing code, navigating project structures,
and ensuring efficient development workflows.

ESSENTIALS -
THE TERMINAL & SHELL

In the early days of computing, users interacted with their machines
through plain, black screens, inputting commands in a text-based format.

The terminal is the graphical interface and environment where you input
commands, while the shell is the underlying interpreter that processes these
commands.

The terminal provides the UI - a window where users type commands,
allowing users to access the shell.

A shell is a command interpreter that processes the commands typed into
the terminal and communicates with the operating system to execute them.
It manages the interpretation and execution of commands, handling tasks
such as file manipulation, program execution, and system monitoring. The
shell interacts directly with the operating system’s kernel to perform these
actions.

MacOS The Terminal

4

PowerShell & Command Prompt for Windows

Essentially, the Terminal acts as a bridge between the user and
the shell. Also known as a terminal emulator or console emulator,

When you launch a terminal application like macOS's Terminal or Windows
Command Prompt, you're opening a terminal emulator, which presents a
text-based UI in a window, where you can enter your commands.
The shell interprets the text input you provide in the terminal, executes the
corresponding instructions, and returns the output, which is then displayed
in the terminal window. By entering commands into the terminal, you can
access and modify files, install software, adjust system settings, and gather
information about various system components.

It’s important to remember that you can have multiple terminals open
simultaneously, each working on different tasks. This flexibility allows you to
manage various terminal sessions simultaneously, each tailored to different
functions or tasks.

 the terminal is a software program that provides a graphical interface
for accessing a computer's command-line interface (CLI).

5

6

 TERMINAL AND SHELL
 APPLICATIONS

macOS's Terminal serves as a windowed environment
for command-line interactions on macOS. It can use
either Bash or Zsh as its default shell, allowing users to
run commands and scripts within macOS.

Windows' Command Prompt also provides a window
for command-line interactions, but it uses the
Command Prompt shell. This setup allows for the
execution of commands and scripts specific to
Windows systems.

PowerShell, on the other hand, functions as both a
terminal and a shell on Windows. It integrates a
powerful scripting environment with its own scripting
language, offering advanced scripting and command
execution capabilities.

The terms "shell" and "terminal" are often used interchangeably, which can
lead to confusion. While they are closely related, they refer to different
aspects of command-line interfaces.

There are various terminals and shells, each offering different features and
capabilities, which can further complicate their interchangeable use.
Some applications combine both functionalities, such as terminal emulators
with built-in shells, allowing users to seamlessly execute commands and
interact with the operating system.

macOS's Terminal and PowerShell are often referred to as both terminal
and shell because they provide the interface (Terminal) and house the
command interpreter (Shell), serving distinct but complementary roles in
user-system interaction.

Bash is one of the most widely
used shells and serves as the
default shell on many Unix-based
operating systems, including Linux
and older versions of macOS.
Known for its power and extensive
features, Bash offers a broad range
of capabilities. It includes various
utilities for managing files and
processes, as well as tools for
automating tasks through scripts.

7

Command Prompt and PowerShell use different commands and syntax
compared to macOS for performing similar tasks. For example, in Windows
Command Prompt, you use `dir` to list folder contents and `copy` to
duplicate files, while macOS uses `ls` for listing folder contents and `cp`
for copying files. These variations highlight the need to understand the
specific command-line conventions of each operating system to perform
file management effectively.

macOS Terminal and Windows Command Prompt both provide a window
for entering and executing commands tailored to their respective
operating systems. macOS Terminal supports more advanced Unix-based
commands and scripting through Bash, whereas Windows Command
Prompt offers more basic functionality.

PowerShell provides a similar windowed interface for entering commands
but extends beyond the capabilities of both macOS Terminal and Windows
Command Prompt. It features advanced scripting capabilities, enabling
more complex automation and scripting tasks in a powerful environment for
Windows.

 COMPARING TERMINALS
Although Windows, macOS and Linux use different sets of
commands and syntax, many core concepts remain
consistent.

BASH

8

allowing developers regardless of their underlying hardware or
operating system to work with the same commands and features.

Git bash does this by emulating the Unix command-line environment,
behaviors, and syntax on Windows, helping to provide a consistent terminal
experience and streamlining work across different operating systems.

It also incorporates Git, a version control system.
Git Bash unifies the development experience and facilitates working with Git
in a terminal environment that behaves similarly across all underlying system
software.

GIT BASH
Git Bash is a terminal that mimics the command-line interface
found on Unix-based systems, such as Linux and macOS.
Git Bash bridges the gap between macOS and Windows users,

FILES & FILE SYSTEMS
A GUIDE

Directories, also known as folders, are used
to organize and group related files. They
provide a hierarchical structure for storing
files and other directories, forming a tree-like
arrangement that begins with a root directory
(the top-most directory in a file system
hierarchy) and branches out into
subdirectories (subfolders).

A file is a collection of data or information
stored on a storage device, and it can
represent various types of content, such as
documents, images, videos, programs, or
system configuration files. Each file is
identified by a name and includes attributes
such as its size, permissions (who can access
or modify it), and creation or modification
dates.

Files also have a file type, which refers to the specific format or category
of data contained within the file, determining how the file is used and
which programs can open or process it. The file type is often indicated by a
file extension, a suffix at the end of the file name preceded by a dot (e.g.,
.txt, .jpg).

Directories can contain a mix of files and subdirectories, facilitating
efficient organization and easy navigation of stored data.

WHAT IS A DIRECTORY?

WHAT IS A FILE?

9

For example, within a top-level "Documents" folder, you might have created
subfolders such as "Work," "Personal," and "Projects." Each of these
subfolders can contain files related to their specific categories.
This hierarchical organization simplifies file management by allowing you to
navigate through the levels of directories to locate specific files.

In addition to organizing files, file systems manage file permissions, for
security reasons and to aid multi-user environments.

Different operating systems use different file systems: Windows commonly
uses NTFS, macOS uses APFS, and Linux may use ext4. Each file system has
unique features, benefits, and limitations designed to meet the needs of the
operating system and the types of storage devices it supports.

In addition, files systems specify rules for naming files and grouping them
within directories. This facilitates organized data storage, simplifies file
retrieval, and provides an efficient way to manage files and directories.

FILE SYSTEMS- ORGANIZING
& STORING DATA
A file system is a structure used by an operating system to
organize, store, and retrieve files on a storage device such as a
hard drive or solid-state drive. It defines how files are named,
arranged into directories (also known as folders), and stored on the
storage media.

10

Directories are organized hierarchically, meaning they can contain
other directories within them, creating a "directory tree" with a
nested structure of folders and subfolders.

 containing unformatted text, ideal for simple notes or documents
and can be opened by any text editor. On the other hand,

.png files, or Portable Network Graphics, are image files that support
lossless compression and transparency, making them ideal for web
graphics and high-quality images.

Image files also come in multiple formats. .jpg or .jpeg files are commonly
used for compressed images, making them suitable for photographs and
web images where a balance between quality and file size is needed.

For video content, .mp4 files are widely used for their ability to provide high-
quality video and audio while maintaining relatively small file sizes. This
format is compatible with most devices and media players. In contrast, .avi
files, or Audio Video Interleave, can store video and audio data in a high-
quality format but often result in larger file sizes.

Audio files include formats like .mp3 and .wav. The .mp3 format is popular
for its compression capabilities, which reduce file size while maintaining
sound quality, making it ideal for music and podcasts. Conversely, .wav files
offer high-fidelity sound without compression, though they result in larger
file sizes.

Executable files are used to run programs and come in formats such as .exe
for Windows operating systems. Double-clicking an .exe file launches the
associated application or script. For macOS, .app files serve a similar
purpose, allowing users to launch and run software.

Compressed files, such as .zip and .rar, help reduce file sizes and facilitate
easier transfer or storage by compressing
one or more files into a single archive.

11

docx files are Microsoft Word documents that include formatted text,
images, and other elements. They require word processing software like
Microsoft Word for viewing and editing.

FILE TYPES
Text files come in various formats, each suited to different
purposes. For instance, .txt files are plain text files

12

FILES - METADATA & ATTRIBUTES
File Metadata refers to the descriptive information about a file
that provides context regarding its characteristics.
File Attributes, on the other hand, control the permissions and
restrictions applied to a file.

Metadata includes details such as the file name, which identifies the file;
the file size, indicating how much space the file occupies on the storage
device; the creation date, which shows when the file was originally created;
and the modification date, reflecting the last time the file was altered.
Additionally, the file type specifies the format or nature of the file, such as
.txt for text files or .jpg for image files. Metadata is crucial for
understanding and managing files, helping users locate and organize their
data effectively.

File attributes dictate how the file can be accessed, modified, or executed.
Key attributes include read permission, which allows users to open and
view the file; write permission, which permits users to modify or delete the
file; and execute permission, which enables users to run the file as a
program, relevant to executable files. Additionally, the file owner attribute
identifies the user or group who owns the file, influencing who can change
its attributes or permissions. File attributes are essential for enforcing
access control and managing how files are interacted with within the
operating system.

 The root directory encompasses the entire file system for a specific
storage device. It includes critical directories and files necessary for both
system operations and user data storage. This makes it a crucial
component of the file system, containing essential system files and
directories that are integral to the operating system’s functionality.

In Linux and macOS, the root directory is commonly represented by a
single forward slash (/).

tree structure, from which all other directories, subdirectories,
and files branch out, creating a hierarchical organization.
Directories are nested within one another, forming a tree-like
arrangement that allows for structured data storage and retrieval.

13

organized under this root - the root acts as the starting point
for organizing and accessing all other files and directories on a
storage device. This root directory forms the base of the directory

ROOT DIRECTORY
& HIERARCHY

The root directory is the foundational directory at the top of
a file system hierarchy. All directories and files are

In Windows systems, the root directory of a drive is
denoted by the drive letter followed by a backslash
(e.g., C:\).

These symbols - (/) and C:\ respectively, denote the top-most level of
the file system hierarchy, with all other directories and files organized
beneath it. For example, the root directory typically contains a directory
named home, which includes subdirectories for each user.

Within a user’s directory, such as user, there is a documents folder where
personal files might be stored.

For instance, C:\Users\John\Documents indicates that "Documents" is a
folder within "John’s" user directory, which is under "Users"
on the C: drive’s root directory. Understanding the root directory is
essential for efficient file system navigation, for locating files and
directories accurately, and manage file paths effectively.
By knowing the structure and path representation of the root directory,
users can better navigate their file systems and access data.

14

It defines the sequence of directories you need to navigate through to
access a specific file, providing a way to organize and manage files
efficiently.

When you interact with your computer’s interface graphically, such as
opening folders or files, you are navigating through the underlying file
system hierarchy. For instance, if you open the ‘Downloads’ folder on a
Windows system, you are accessing the directory located at
C:\Users\yourusername\Downloads.
This path reflects the hierarchical structure of the file system, starting from
the root and moving through user-specific directories.

For instance, if you navigate to the Documents folder, your CWD is now
Documents.

In graphical interfaces, the concept of the Current Working
Directory (CWD) is represented by the folder or directory you are
currently viewing. When you open a file explorer, it starts in a
default directory, like your user’s home folder.
Clicking through folders navigates you deeper into the directory
structure, changing the view to show contents relative to your
current location.

15

FILE PATHS
A file path is a unique identifier used to locate a file or
directory within a file system. It specifies the exact
location of a file or application within the file system.

Opening different directories changes your current CWD,
representing your position in the file system and showing you contents
relative to your current location.

For example, on Unix-like systems such as Linux or macOS,
the default might be /home/yourusername,
while on Windows, it could be C:\Users\yourusername.

When operating the terminal, the CWD will be displayed as part of the
prompt, indicating the directory you are currently operating in.
This is the directory where your terminal or command-line interface is
currently focused. When you enter commands, the CWD serves as your
starting point for file operations and command execution. This means that
any operations will be based on your current location in the directory
structure.

When you use the graphical interface, navigation is visual.
Clicking “Up” moves to the parent directory, while opening subdirectories
dives deeper into the hierarchy. Most file explorers display the current
directory path somewhere in the interface, often in a breadcrumb trail or
address bar. This shows your current position within the underlying
directory structure.

When you open a terminal or command prompt, it starts in a default
directory, usually your user’s home directory.

16

An absolute path provides the complete address of a file or directory from
the root of the file system. It begins with the root directory and includes
every directory in the hierarchy up to the target file or folder. This path tells
the system exactly where to find a file or directory, regardless of your
current location in the file system.

On a Windows system, an absolute path might look like
C:\Users\yourusername\Documents\file.txt.

On a Unix-based system (like Linux or macOS), it would be
/home/yourusername/Documents/file.txt.

These paths explicitly direct the system to the file's location, no matter what
your current working directory is.

In the command-line interface (CLI), navigation is text-based.
To navigate to different directories, you use the `cd` (change
directory) command.
For example, if your CWD is /home/yourusername
and you want to move to /home/yourusername/Documents,
you would enter `cd Documents`.
After pressing enter and executing this command,
/home/yourusername/Documents becomes the new CWD.

Commands will affect the files and directories within the CWD
unless you specify a different path.

TYPES OF FILE PATHS

17

A relative path specifies a file or directory location in relation to the
current working directory. It does not start from the root directory but from
where you are currently navigating within the file system - current working
directory.

C:\Users\yourusername\Documents\

For example, if you are in the
Documents directory and you
want to access file.txt within
that same directory, you can
simply use the relative path
`file.txt.`

Documents

CWD

However, if file.txt is located in the Downloads directory,
which is a sibling directory to Documents, you would use
the relative path `../Downloads/file.txt.`

18

file.txt
file you want to access

file.txt.

Here `..` represents
moving up one level
to the parent
directory, and then
navigating down into
the Downloads
directory to access
the file. This use of
relative paths allows
you to navigate the
file system efficiently
based on your
current location.

C:\Users\yourusername\Documents\

../Downloads/file.txt.

Documents

CWD

Downloads

Parent directory

file.txt
file you want to access

For example, if you provide the path C:\Program Files\MyApp\myapp.exe
and execute it, the operating system locates this .exe file in the specified
directory and starts the application. The file path acts as a navigation tool,
guiding the operating system to the correct location and then runs it with
the same command.

When you specify a .txt file in the Command-Line Interface (CLI), such as by
using a command like cat filename.txt (in Unix-like systems) or type
filename.txt (in Windows), the CLI reads and displays the contents of the
file. Text files are meant to be opened with text editors or viewed directly,
and the system simply processes and outputs the text contained within
the file.

For example, running `cat document.txt` in a Unix-
based terminal will show the text contained in
document.txt directly in the terminal window. It does
not execute any commands or code.

When you specify a .exe file in the CLI, you are instructing the system to
execute the file as a program. For instance, typing `myapp.exe` in the
Command Prompt or `./myapp.exe` in a Unix-like terminal will start the
executable program.

Executing a .exe file involves loading the program into memory and
running it according to its coded instructions. This can result in a wide
range of outcomes, such as opening an application window, performing
system tasks, or generating output.

RUNNING SCRIPTS &
COMMANDS

When programming, file paths are used to read from, write
to, or modify files. When you enter the file path for a
program or executable file (like a .exe on Windows),

 you are directing the computer to that location and instructing it to
launch the program.

19

Reading a file involves accessing its contents without making any
changes. This action allows you to view or retrieve the information
contained within the file. For example, opening a text file to read its
content, such as a story or data in a log file, demonstrates reading a file.

Executing a file means running it as a program or script. This action causes
the file to perform its designated tasks or operations. For example, running
an application by clicking its icon or executing a script to automate tasks
demonstrates executing a file.

Deleting a file removes it from the storage device, making it no longer
accessible through the file system. This action permanently eliminates the
file's data unless it is recoverable from a backup or recycle bin. For
instance, moving a file to the trash or recycle bin and then emptying it to
permanently delete the file illustrates deleting a file.

These operations—read, write, execute, and delete—are fundamental for
managing files and controlling how data is handled on a computer.
Permissions govern who can perform these actions, ensuring proper access
and security.

Writing to a file means modifying its contents by adding new
data or updating existing information. This changes what the
file contains. For instance, saving changes to a document
you’ve edited or appending new information to a
configuration file involves writing to a file.

FILE OPERATIONS- READ, WRITE,
EXECUTE, DELETE
Understanding file operations—read, write, execute, and delete—
is essential for effective file management on a computer. Each
operation serves a specific purpose.

20

The file owner is the individual who creates or saves a file initially
and holds special control over it.
Ownership confers specific rights and responsibilities.

Read
The owner can view the file’s contents.

Write
The owner can modify or add to the file’s contents.

Execute
For executable files or scripts, the owner can run the file.

Delete
The owner can remove the file from the system.

The file owner can also set or modify permissions for other users or
groups, determining who else can read, write, execute, or delete the file.

 For example, a file might be set to allow only the owner to read
and write it, while others may only be able to read it. This system
of ownership and permissions helps manage file security and
organization, ensuring that only authorized users have access to
or can modify important files.

21

FILE OWNERSHIP

These permissions are typically set by the file owner or a system
administrator and can be configured to suit various user roles and needs.

For instance, a file might be set to allow only its owner to read and write it,
while others may only have read access. Proper management of these
permissions is crucial for protecting sensitive data and ensuring files are
used securely and efficiently.

User roles define the levels of access and permissions within a system or
network, managing what actions users can perform on files and other
resources. Common user roles include:

The administrator has comprehensive control over the system, including
creating, modifying, deleting files, and altering system settings.
Administrators can set permissions for other users and manage system-
wide configurations.

The standard user typically has restricted access, able to read and write
their own files but lacking the ability to modify or delete files owned by
others or make system-wide changes.

Guests generally has very limited access, permitted only to read files or
use certain applications. Guests cannot alter the system or access sensitive
data.

ACCESS, PERMISSIONS
& USER ROLES

File permissions control access to files on a computer,
 dictating which users or programs can read, write, execute, or
delete files.

22

Permissions are set to ensure that only authorized users or systems
can access or manipulate specific files and directories.

Privileges, or specific rights granted to users, determine the
actions they can perform within the file system.

Proper management of these permissions is vital for maintaining
system security and organization. System administrators or users
with the appropriate privileges oversee the contents of the root
directory and its subdirectories.

23

The root directory is subject to strict access controls and
permissions, which regulate who can view, modify, or manage its
contents.

UNDERSTANDING
VERSION CONTROL
& GIT

Version control systems are essential for managing changes to projects over
time. They allow you to track modifications, maintain detailed history, and
facilitate collaboration among multiple users.

It helps you manage and track changes made to files and helps secure your
projects by providing a comprehensive backup of your work.
Imagine working on an important document and accidentally deleting a
crucial section or making an unwanted change. With version control, you can
effortlessly revert to earlier versions of your file, undoing any mistakes and
recovering lost content.

24

Git is a powerful version control tool that helps you
manage and track changes to your files.

To use Git, you first need to download and install it
on your computer. Unlike graphical applications
with buttons and windows, Git is a command-line
tool - you use terminals to work with Git.
This means you interact with Git through a text-
based interface where you type commands to
perform actions.
However, version control can also be integrated
within an IDE for a more visual approach.
Additionally, it can be utilized through the integrated
terminal in
VSCode, allowing for a combination of graphical and
command-line interfaces.

WHAT IS VERSION CONTROL?

This feature is invaluable in situations such as a computer crash,
accidental file deletion, or when you want to review the
evolution of your document over time. Version control provides
a safety net, allowing you to restore previous states and
maintain the integrity of your work.

A key feature of version control systems is their ability to manage multiple
contributions simultaneously. When different people work on separate parts
of a document, version control systems can seamlessly merge these
changes into a single, cohesive file.

This integration process ensures that all contributions are combined
smoothly, resulting in a complete and up-to-date version of the document.
By effectively handling these contributions, version control systems
prevent conflicts and avoid overwriting each other's work, preserving the
integrity of the document.

Each change is logged with an author and a timestamp, providing a clear
record of the document's evolution and the context behind each update.
This historical overview is essential for managing collaborative projects
effectively, allowing teams to track progress, review contributions, and
coordinate their efforts.

25

Git operates locally on your computer.
This means all version control actions, such as branching,
merging, and reverting changes, are done directly on your
machine. You don't need a constant internet connection to
use Git, as it maintains a complete history of your files right
on your computer. This local framework provides a robust
environment for managing your files and their history.

LOCAL OPERATION &
VERSION CONTROL

CLOUD- GITHUB & GITLAB

GITHUB GITLAB

Once you have Git installed on your computer, you can use
online platforms like GitLab and GitHub to improve your
version control by storing your repositories in the cloud.

These platforms allow you to upload your local Git repositories to a remote
server, which means all your project files, commit history, branches, and
tags are saved online.

By uploading your repository to GitHub or GitLab, you ensure that your
project’s history is available from any computer, as long as you have the
right access permissions. This makes it easy to switch computers or
collaborate with others, as you can download your repository to any machine
and continue working from where you left off. Additionally, these platforms
provide URLs that you can share with colleagues or collaborators, granting
them access to your codebase based on their permissions.

In professional settings, you'll regularly use GitHub, GitLab, or similar
platforms. These tools are crucial for managing and sharing code,
maintaining project history, and facilitating teamwork.

26

Just like a folder contains various files and subfolders, a repository
contains all project files and directories.

It also contains any auxiliary files, such as documentation, configuration
files, and help files, which are crucial for understanding and managing the
project.

This repository acts as a container for the entire project, including
independent lines of development, ensuring that every change is
meticulously tracked and documented - capturing the complete history of a
project's evolution and storing all past and present states of the code.

The detailed record within a Git repository is comparable to metadata but
far more extensive and functional.

27

VERSION CONTROL FEATURES
At the core of Git are several fundamental concepts that aid
collaboration and maintain the integrity of the project's
history.

 Think of it as a directory that holds all the files
related to a project, along with a comprehensive
history of all modifications and updates.

REPOSITORIES
A repository, often abbreviated as "repo," serves as
the central storage location for a project managed
by a version control system.

Commit Message - A description of the changes made
in that commit.

-m
Date and Time - When the commit was made.

Commit Hash - A unique identifier for each commit.

Author Information - Who made the commit.

-m

A commit is a fundamental concept in version
control, akin to a save in a word processor. It
represents a specific set of changes made to the files
in a repository, capturing the state of the project at a
particular moment in time. Just like saving your work
in a word processor, a commit ensures that your
progress is recorded and can be revisited later.

Each commit includes details about the save, allowing you to track how the
project evolves.
The commit history is a chronological record of all commits made in a
repository, and serves as a detailed log of the project's development. Each
entry in the commit history includes key information about the commit.

28

COMMITS

While metadata on your computer typically includes basic
information such as file size, type, and creation/modification
dates, the history in a Git repo includes in-depth details about
each change, such as, who made the change

(author and committer information), when the change was made
(timestamp), what was changed (differences between versions),
why the change was made (commit messages providing context or
reasons).

It is the branch that most developers consider the primary code base of
development, where the most reliable and tested code should be stored.
Developers and teams work to ensure that this branch remains free of errors
and issues.

The default branch name in Git repositories can be either main or master,
depending on the context and repository setup. Historically, master was the
default branch name used by Git, but many projects and platforms have
transitioned to using main as the default branch name to adopt more
inclusive language. If you encounter a repository using main, and another
using master, they are functionally the same; only the name differs.

The main branch is the default branch
created when you first create - ie
“initialize” - a new repository. It

represents the stable and most up-to-date version of
your project. This branch is typically where the
final, production-ready code resides - the one that
goes live on a website, for example, which users
interact with.

BRANCHES

Central Repository for Stable Code
The main branch serves as the repository for the stable and production-
ready code. It is the branch that is often made available to end-users. By
keeping the main branch stable and working, teams ensure that the
code in this branch is functional and reliable.

Integration Point for Features and Fixes
When developers complete work —such as features or bug-fix —they add
their changes to the main branch. This process integrates new features
or fixes into the stable codebase, ensuring that these updates become
part of the project’s primary version.

Reference Point for New Development
The main branch acts as a reference point for creating new branches.
Branching in Git is best described as creating a parallel version of the
main branch. Think of it like this: If the main branch is like a timeline of
your project, creating a new branch is like drawing a new line that starts
from the same point but can diverge in different directions,
where both lines can evolve independently.

29

On the parallel version, you can work on specific features, bug fixes, or
experiments without affecting the main branch.

For example, if you’re tasked with developing a new feature like a login page
for a website, you might create a branch named feature-login-page.

This branch starts with a complete copy of the main codebase,
allowing you to ensure that the new login feature integrates seamlessly with
the rest of the website. You can test how the login feature interacts with
existing functionality and make adjustments as needed.

Developers typically create feature branches or bug-fix branches off of the
main branch. This means that work on new features or fixes begins with the
latest version of the stable code, ensuring that new developments are built
on top of the most current codebase.

For example, after finishing work on the "feature-
login-page" branch, you would merge it into the main
branch to add the login functionality to the project.
The merge process ensures that both the code for
the new feature and the code with the recent
updates in the main branch are preserved.

 project - this allows you to diverge from the main codebase and use it as a
starting point for new developments, without altering the original
codebase.

Creating branches, or branching, is a powerful feature that allows
developers to create separate lines of development within your

MERGING

Once work on a branch is complete, the changes need to be
integrated into the main project. This process is known as
merging. Merging combines the changes from one branch into
another, typically incorporating them into the main branch.

30

This branch can be kept for reference or deleted if it is no longer needed.
Merging changes into the main branch often involves code reviews - this
integration typically follows a review process to ensure code quality.
Since the main branch is where all changes converge, it becomes
the focal point for resolving any conflicts between different
branches and reviewing code before it becomes part of
the stable version.

For most merges, Git can automatically integrate changes from one branch
into another. This is the case when the changes do not overlap or conflict.

Git compares the differences between the branches and applies the
changes to the target branch without any issues.

This comparison includes added, deleted, and modified lines of code.
Git then applies these differences to the target branch (e.g., main).
It takes the changes from the source branch (feature-login-page) and
integrates them with the existing code in the target branch.

The feature branch still exists separately and contains a copy of the
codebase from the main branch at the point when it was created, plus any
specific changes you made for the new feature, such as the login page. It
remains as it was before the merge, which means it still contains the code
developed for the login feature.

This means that new lines of code, changes to existing lines, and
deletions in the feature branch are incorporated into the main
branch.
If there are no overlapping changes—meaning that the feature
branch and the main branch have modified different parts of the
code or different files—Git handles this integration seamlessly.

For example, if the main branch has recent improvements to the
website’s layout or functionality (that were not present when you
created your feature branch), these changes are preserved and
combined with the login feature you’ve developed.

After merging, the main branch represents the updated codebase
that includes both the current existing functionality and the new
changes from the feature branch.
There is no longer a separate, isolated codebase for the feature;
its changes are now part of the main codebase.

31

CONFLICTS

For instance, if someone updated the layout of the homepage on the main
branch while you were working on the login feature, there might be
conflicting changes.

If Git finds conflicts—places where the changes from your feature branch
and the main branch can’t be automatically merged—it will ask you to
resolve these conflicts.
This means you’ll need to manually review the code and decide how to
combine the changes. You need to open the files with conflicts and
manually review the changes.

Git will show both versions of the conflicting code, allowing you to decide
how to integrate them. For example, you might need to manually combine
the layout changes with the login feature to ensure both are correctly
represented.

Sometimes, changes in the feature-
login-page branch might overlap with
changes that were made to the main
branch since the branch was created.

These conflicts occur when both branches have
modifications in the same areas of code.

32

MAIN

TEAMMATES WORK

YOUR WORK

UPDATED
MAIN

GLOSSARY
& VISUAL

 EXPLENATIONS
BRANCHING AND MERGING

33

REVERTS

