
LINNAEUS
UNIVERSITY
SUMMER 2024

SUBMITTING WITH GIT
SUMMER COURSE

GIT HUB HELPER

2

USING GIT &
CLONE A REPO
Here’s a step-by-step guide on how to clone a GitHub repository and commit
changes to that repo using Git Bash.

Use cd to navigate between directories.
```cd ..``` moves you up one directory level.

To clone your repository to your local machine, you'll need the
repository's URL.

Go to your GitHub account and navigate to the repository you want
to clone. Click on the green Code button.

Copy the URL (it might look like: 
https://github.com/username/repo.git).

Open Git Bash

In Git Bash, navigate to the directory where you want to store your
project - where you want your cloned repo to “live” on your
computer. 

For example: 
```cd my/path/to/introduction_to_computerScience```

When you have navigated to introduction_to_computerScience, run
the following command
(Replace https://github.com/username/repo.git with the actual
URL of your repository.):

```git clone https://github.com/username/repo.git```

One your computer, create a folder.

Make sure that the files you want to commit to the repo are in the
appropriate folder you are aiming to commit.

1

2

3

4



Open your file explorer and drag and drop the folder into the target
subdirectory of your local Git repository. You can use your file
manager to move the folder into the repository subdirectory.

Check that the folder has been successfully added to the
subdirectory. 

In Git Bash, you can use ```ls``` to list the contents of the subdirectory. 
You should see your new folder listed.

The root of your Git repository is the top-level directory where the .git
folder resides. This is the starting point of your repository. If you are
already in the root of your repository, you can stage changes from
there directly. Navigate to the root of your Git Repository.

Use ```cd ..``` to go up one level in directory hierarchy

Git tracks changes in your repository, but it doesn't automatically
know which changes you want to commit. You have to stage the
changes first. Use Git to stage the new folder and its contents so that
Git tracks the changes. 

If you want to stage all changes in the repository (including new
folders and files), you can use:

```git add .```

or you can use the command

```git add subdirectory/new-folder```

Once the repository is cloned, navigate into the directory of your
repository (Replace repo with the name of your repository.):
```cd repo```

Navigate to the subdirectory (the folder for the specific week) within
your repository where you want to add your new folder.

Use cd to change directories if needed. Navigate into the
subdirectory for the appropriate week.
For example, if you want to add the folder to subdirectory:
```cd subdirectory```

3

5

6

7

8



Commit Your Changes - after staging your changes, the next step is
to commit them. A commit is like a snapshot of your repository at a
certain point in time.

The -m flag allows you to add a commit message directly from the
command line. The message should briefly describe the changes
you've made.
```git commit -m "Add new-folder to subdirectory"```

Finally, you'll want to push your changes to GitHub so that they're
saved remotely and visible on your GitHub repository.

```git push```

If this is the first time you're pushing to this repository, Git may ask you for
your GitHub username and password (or a token if you’ve set up two-factor
authentication).

To make sure your changes were successfully pushed, go back to your
GitHub repository in your browser and refresh the page. You should see your
new folder and any files inside it.

8

9



If you already have a Git repository on your computer, meaning you've either
cloned it before, you can manage and update it without needing to clone it
again. Here's how you can work with your existing repository, including
adding folders, staging changes, committing, and pushing updates.

Add a new folder to your repository -  if you want to add a new folder
or files, you can do so using your file explorer or directly from Git
Bash.
Using File Explorer: Open your file explorer, and drag and drop the
folder into your repository directory. (You can also create folders
directly in Git Bash, or move existing files to your repo in Git Bash, but
we won’t cover that here. )

Check if the folder has been successfully added by listing the
contents. You should see your new folder listed.

```ls```

Stage the changes - to stage the new folder and its contents, use git
add. For example, if the new folder is named
introduction_to_computerScience use the command

```git add introduction_to_computerScience```

f you want to stage all changes (including modifications, deletions,
and new files), use:

```git add .```

This command stages all changes in the repository.

ADD FILES/FOLDERS TO
ALREADY CLONED REPO

Open Git Bash - start by opening Git Bash on your computer.
Use the cd command to navigate to your existing repository
directory. For example:

```cd path/to/your/repo```

Replace path/to/your/repo with the actual path to your repository.

5

1

2

3

4



Commit Your Changes - after staging, commit your changes with a
descriptive message. For example:

```git commit -m "Added  introduction_to_computerScience with its
contents"```

Push to Remote Repository - to push your committed changes to a
remote repository (like GitHub), use:

```git push```

If the GitHub repository already contains commits (e.g., if it was
initialized with a README or other files), run this command to ensure
your local repository is up-to-date before pushing your changes. This
step helps avoid conflicts with any existing commits on the remote
repository. Use:

```git pull```

6

5

6

7

Initializing a local Git Repository and pushing to GitHub involves setting up a
version control system for your project on your local machine and then
making it available on GitHub for backup. When you initialize a local Git
repository, you create a .git directory in your local project folder. This
directory contains all the metadata and configuration files that Git uses to
track changes in your project.

You will create a new repository on GitHub first.
Go to the GitHub website and sign in to your account. Click on the "+" sign at
the top right corner and select "New repository". Provide a name for your
repository, choose the desired settings, and create the repository.

On the GitHub repository page, note the repository's URL (ends with .git).
You will need it later in the guide.

INITIALIZE A LOCAL GIT
REPOSITORY AND PUSH
TO GITHUB

7

Start by opening Git Bash.
Navigate to Your Project Directory: Use the cd command to move to
your project directory where you want to initialize Git - that will be
your root folder for Git.

```cd path/to/your/project```

Initialize a new Git repository in your project directory. This command
creates a new .git directory in your project, which will track your
changes:

```git init```

Stage all your files for the first commit - this stages all files in your
project directory:

```git add .```

Make the first commit with a message:

```git commit -m "Initial commit"```

1

2

3

4

Verify the remote repository - check that the remote has been added
correctly. This will list the remote repositories linked to your local
repository:

```git remote -v```

Push your local commits to the GitHub repository. By default, you
push to the main branch (or master, if that’s the default branch
name). 
If your default branch is master, replace main with master.
Handle authentication - you might be prompted for your GitHub
username and password.

Use:

```git push -u origin main```

8

You need to link your local repository to the existing GitHub
repository. Use the URL of your GitHub repository to add a remote
named origin.

Replace https://github.com/username/repo.git with the
URL of your newly created GitHub repository.
You can find this URL on your GitHub repository page, typically under
the "Code" button. Then run the command:

```git remote add origin https://github.com/username/repo.git```

5

6

7


