
THE ANATOMY
OF CODE -
BASICS UNPACKED

WEEK 3 - PART 2

LINNAEUS
UNIVERSITY
SUMMER 2024

TABLE OF
CONTENTS

3 code - the nitty
gritty

coding -
examples & how
to

datatypes table

python examples

javascript examples

print()/console.log();

if-then

code is sequential

variables

statically vs. dynamically
typed languages

datatypes

if - then in action

comparison operators
 > and <

indentation

computers aren’t actually
smart, just fast

17

3

18

7

12

14

15

11

16

3

17

19

21

8

9

11 logic & algorithms

//comments 20

CODE -
THE NITTY GRITTY

In programming, mastering the basics of how code works and how to
structure it logically is key to creating effective and reliable software.

Previously we have said that code consists of statements and commands.

When we say that code is composed of statements that define and control
data, we're referring to the different types of instructions that make up a
program. Each statement in a program serves a specific purpose, such as
defining a variable. In essence, code is composed of statements that
define and control data and expressions or instructions that perform
operations or actions using that data.

3

VARIABLES

variable name =
toybox

TOYBOX Retrieve toybox to
access the rocket

In the world of programming, variables are like containers that hold
different values - different types of data. They allow us to store and
manipulate data, making our programs dynamic and adaptable.

Imagine variables as labeled boxes where you can store various things, such
as numbers, text, or complex data. These boxes have names, called
identifiers. An identifier is the name you as the programmer give to a variable
(or other elements) in your code. It acts as a label or a tag that you can use
to refer to the stored data.

Just like a label on a physical box helps you identify what's inside without
opening it, an identifier helps you identify the data associated with that
variable in your code.

4

VARIABLES are of specific DATATYPES, have
specific VARIABLE NAMES (identifiers), and contain
a VALUE.

int age = 21;toy toybox = rocket

Stored in your computers
RAM when coding.

Stored in your garage
when not used

DATATYPE is toy.
This box is made to fit a
toy.

DATATYPE is int (integer).
This variable is made to fit a
whole number.

When you
need the VALUE of a
variable, you reference
the VARIABLE NAME

When you
need the ROCKET you go to
the garage and
look for TOYBOX

“AGE”

21 VALUE :
21

DATATYPE :
INT

VARIABLE
NAME :
“AGE”

IN COMPUTER MEMORY

RAM

Instead of writing “20” all the time, the computer remembers what's in the
container named "age". We can refer to this “container” stored in the
computers memory in order to access the VALUE 20.

Instead of buying a new rocket anytime you want to play, you store it for
whenever the need arises. You remember you put the rocket in a box labeled
“toybox” in your garage, where go whenever you want the rocket out.

TOYBOX

VARIABLE
NAME:
“TOYBOX”

VALUE:
ROCKET

DATATYPE:
TOY

Initializing a variable refers to the process of assigning an initial value to a
variable at the time it is declared. This combines two actions: declaring the
variable (which tells the program to set aside a space in memory) and
assigning it a value (which puts something into that space).

5

Variable Declaration is when you introduce a variable in your code.
For example, int age; in Java or let toy; in JavaScript defines a variable
named age without yet giving it a value. When you declare a variable, you are
essentially telling the computer to set aside a space in memory for that
variable. However, if you don't assign a value to the variable at the time of
declaration, the space is reserved, but the value stored in that memory
space is either undefined, uninitialized, or set to a default value, depending
on the programming language you're using.

Variable Assignment is when you assign a value to a variable.
For example, age = 20; assigns the value 20 to the variable age. Assignment
is how you define what each variable holds at any given moment.
Once you assign values to variables, you can use them throughout your
code.

let toy;

toy = rocket;

let toy =
rocket;

Every variable you declare consumes memory, as it needs
space to store its value. Before a variable can be used in your
program, it must be declared so that the computer can

 allocate memory for it. Once declared, the variable is stored in
 the computer's memory, allowing you to access and manipulate
its value throughout the execution of your program.

By declaring a variable, you effectively reserve a chunk of memory that
persists for the duration of the program, enabling you to reuse the variable
and its value multiple times as needed.

You can also change the VALUE of a variable once its value has been
assigned. This is called reassigning.

Reassigning a variable involves changing its value after it has been initially
set. The new value replaces the old one, and any further usage of the
variable will reflect this updated value. This capability allows variables to be
flexible and dynamic, adapting to the needs of your program as it runs.

Remember, you DO NOT create a new variable - you change the VALUE of
the old one.

6

21

“AGE”

36

TOYBOX

You keep the box, and the label.
You remove the rocket and put a ball
inside instead.
This changes the variable ‘toybox’,
whose VALUE was rocket to ball

let age = 21;
age= 36

This changes the variable ‘age’,
whose VALUE was 21 to 36

In programming, data types define the kind of data that a variable
can hold. They help the computer understand what kind of data it
is working with and how to handle it.

In this image the DATATYPE is int, which stands for integer.
When you declare a variable as an int, you're telling the computer that this
variable will store specifically integers - whole numbers (with no decimals).

This allows the computer to allocate the appropriate amount of memory for
this type of data and to perform arithmetic operations correctly.

Java and C# use specific data types like int (integer) to provide precise
control over data and memory, whereas JavaScript handles numbers
differently.

In JavaScript, the “number” type covers both integers and floating-point
numbers (numbers that have decimal points - 0.7 for example).
In languages like Java and C#, you need to specify whether a number is an
integer (int) or a floating-point number (float).

Different languages may use different terminology and types, but the
fundamental concepts of handling whole numbers and decimal numbers
are consistent.

7

DATATYPES

int age = 21;

8

Java and C# are statically typed, meaning the data types of variables must
be explicitly defined at compile-time (remember, they require
compilation).

By specifying data types, Java and C# can allocate appropriate amounts of
memory and optimize performance for different operations.
Specifying datatypes also allows the compiler to check for type errors
before the code runs, improving code safety and reliability.

JavaScript is a dynamically typed language, which means you
don't need to define data type when you declare a variable.
Datatypes are more flexible and less type-specific - variables in JavaScript
do not have a fixed type, and the type can change at runtime.
The type is determined by at runtime based on the assigned value.

The dynamic typing system offers more flexibility and simplicity for
developers, especially in a language designed primarily for web
development, where ease of use and rapid development are often
prioritized. Python is also dynamically typed, which means that variable
types are determined and checked at runtime rather than during
compilation. This flexibility can simplify coding but may also lead to
unexpected behavior if not managed carefully.

In JavaScript, we don't specify DATATYPE.
Instead, you declare variables using either var, let, or const.
Regardless of which keyword you use, you do not specify the type of data
the variable will hold - JavaScript deduces the data type from the value
assigned.

In programming languages, you might use different syntax to perform
a task, but each language is built on similar principles.

STATICALLY VS. DYNAMICALLY
TYPED LANGUAGES

When you write a computer program, the code runs from the top of the
file to the bottom, one line at a time. This means that the order in which you
write your instructions matters.

The computer follows the instructions EXACTLY as you give them, so if
something is written in the wrong order, it can cause the program to not
work as expected or even crash.

The code must be logically structured so that each instruction follows a
sequence to achieve the desired outcome.

Imagine you want to bake a cake.
The correct steps are -

Preheat the oven.
Mix the ingredients.
Pour the batter into a pan.
Bake the cake.

If you follow these steps in order, you'll get a
cake.

But what if you mixed up the order like this?

Pour the batter into a pan.
Bake the cake.
Preheat the oven.
Mix the ingredients.

This doesn't make sense, right?
You'd end up baking an empty pan and
trying to mix ingredients after they've
already been "baked."

9

CODE IS SEQUENTIAL

9

10

In this example, the program tries to print the message
before it's created. Because of this, it will give you an
error.

Now, the message is created first, and then the program
prints it, so everything works as expected.

Always think about the order of your instructions in a program.
Just like following the right steps in a recipe, the order of your code is crucial
to getting the correct outcome.

Wrong Order

print(message)
message = "Hello, World!"

Correct Order

message = "Hello, World!"
print(message)

11

LOGIC &
ALGORITHMS

So, what do we mean by logic?
If bits and bytes are building blocks, logic can represent how we chose to
arrange these blocks. It serves as the concepts that decide how to organize
our code, and is is essential for organizing and structuring code effectively.
Firstly, logic determines the sequence in which statements and commands
are written within your code.

Logic also controls execution based on conditions and decisions, and
enables your program to make decisions by evaluating conditions and
choosing different paths or actions based on those conditions.

For example, you might want your program
to perform a specific action only if a
condition is true. This is one of many
conditional statements in programming,
called an IF - THEN statement.

IF - THEN
In programming, an if-then statement is a way to make a decision based on
a certain condition. It tells the computer: "If something is true, then do
something; otherwise, don't do anything."
An if-then statement is a basic logical structure that presents conditions
and their resulting actions.

To illustrate, consider common scenarios like pedestrians following traffic
lights. If the light is green, we walk, but otherwise, we wait.
If we break down the decisions that go into walking across a street using
programming terms, we get an if-then statement.

This captures a logical sequence – if a specific condition is met (the light is
green), then a particular action should be taken (pedestrians can cross).

12

IF-THEN IN ACTION

PYTHON JAVASCRIPT

Let's zoom into the scenario of crossing a street to illustrate
this a bit more - and lets see how code handles this
conditional logic.

if traffic_light_is_green:
checks whether the condition
 "traffic_light_is_green" is true.

If the condition is true
(meaning the traffic light is
green), the program will
execute the cross_street()
action.

If the condition is not true
(meaning the traffic light is not
green),
the program will skip over the
cross_street() action,
and execute the
wait_at_the_corner() action
instead .

if (trafficLightIsGreen)
Checks whether the condition
trafficLightIsGreen is true.

If the condition is true
(meaning the traffic light is
green), the program will
execute the crossStreet()
function.

If the condition is not true
(meaning the traffic light is not
green),
the program will skip over the
crossStreet() function,
and execute the
waitAtTheCorner() function
instead.

if traffic_light_is_green:
 cross_street()

else:
 wait_at_the_corner()

if (trafficLightIsGreen) {
 crossStreet();

} else {
 waitAtTheCorner();
}

This is similar to how we make decisions in real life.

If the traffic light is green, we cross the street. If not, we wait.

In programming, we use "if-then" statements to replicate this
decision-making process in a logical way that the computer can
understand.

This is an algorithm - systematic, step-by-step instructions engineered to
solve problems or attain objectives.

Consider an algorithm for efficient grocery shopping.
This involves a meticulous sequence of steps: compiling a shopping list,
navigating the store, handpicking items, and proceeding to checkout.

Algorithms are engineered to streamline processes elegantly, akin to
guiding someone to the nearest store through a well-structured set of
directions.

The purpose of an algorithm is to solve a problem as quickly and simply as
possible, representing the most straightforward and efficient way to
provide instructions. Note that since computers are binary we must
formulate our conditions in a binary way - there is only true or false in
programming!

In its essence, logic means sketching out a sequence of actions into its
smallest components, crafting efficient pathways that deftly handle tasks
or tackle challenges in the most optimal way.

How would you instruct someone to reach the nearest bus stop?
Would you TELL them to put shoes on, or assume they would think of that
themselves?

13

Greater Than >

This operator checks if the
value on the left side is greater
than the value on the right side.

Example: 5 > 3 would return true
because 5 is greater than 3.

Less Than <

This operator checks if the value
on the left side is less than the
value on the right side.

Example: 5 < 3 would return false
because 5 is greater than 3.

These operators are often used in if statements and other control
structures where you need to make decisions based on the comparison of
values.

For example, you might use > or < to check if a user’s score is higher than a
certain threshold, or to compare the sizes of two objects.

14

In programming, comparison operators are used to compare
two values. The two most common comparison operators
are > and <

The main purpose of these operators is to compare values. They help
determine the relationship between two numbers (or other comparable
values). When you use these operators, the result is always a boolean value:
true or false. If the comparison is correct (e.g., 7 > 3), the result is true.If the
comparison is incorrect (e.g., 3 > 7), the result is false.

COMPARISON OPERATORS
 > AND <

let a = 10;
let b = 20;
console.log(a > b);
// This will print: false, because 10 is not greater than 20

console.log(a < b);
// This will print: true, because 10 is less than 20

Python is different from JavaScript. Python uses indentation to define code
blocks, and no curly braces are needed.

It doesn't use curly braces {} to define blocks of code - instead, Python relies
on indentation. This means that the spaces or tabs at the beginning of a line
are crucial to the structure of the program. For example, in an if statement,
the code that should run if the condition is true must be indented (usually by
four spaces). Since Python uses indentation to group code, there’s no need
for {}.

JAVASCRIPT

JavaScript uses {} to group code, and indentation is just for readability.
In JavaScript, blocks of code are grouped together using curly braces {}. For
example, when you write an if statement, the code that should run if the
condition is true is enclosed within {}.

Although not required by the language, indentation (spacing) is typically
used to make the code more readable. Most developers indent the code
inside the curly braces so that it’s easy to see which code belongs to which
block.

15

When you're writing code, the structure of your program is
crucial. Different programming languages use different
methods to organize and define blocks of code.

INDENTATION

let x = 10;
let y = 5;
if (x > y) {
 console.log("x is greater than y");
}

PYTHON

x = 10
y = 5
if x > y:
 print("x is greater than y")

But computers lack intelligence. If you string all the tasks computers do
together they give the illusion of a supersmart piece of technology.

In reality, everything a computer does is built of millions and millions of
VERY small calculations, done in fast succession.

What is worse, they do exactly what you tell them to do.

The challenge in coding is not in matching the computer's intelligence -
but in communicating instructions at the computer's basic, literal level.
In essence, the programmer needs to get down to the “dumb” level of the
computer.

While binary logic provides a basic foundation for decision-making,
in programming, it often struggles with the complexity of real-world
problems, which cannot be easily reduced to simple yes/no questions.
Real-world scenarios often involve multiple factors, nuances, and exceptions
that require more sophisticated decision-making than a binary approach
intuitively provides.

The challenge lies in expressing what you want the
computer to do in such a precise, concrete, and incremental way that
leaves no room for the computer to misinterpret your intent.

Crafting effective algorithms requires leveraging basic binary logic, while
incorporating more nuanced ways to express instructions that reflect the
complexity of tasks the programmer wants to accomplish. This ensures that
programs can accommodate a variety of scenarios and make accurate
decisions.

For example, instructing someone to reach the nearest
hospital involves factors like current location, traffic
conditions, and available routes. A binary decision-
making approach may oversimplify these complexities.

16

Computers are INCREDIBLY fast. A modern-day computer
processor, operating at gigahertz (GHz) speed, can perform
billions of calculations per second.

COMPUTERS AREN’T ACTUALLY
SMART, JUST FAST

17

CODING -
EXAMPLES & HOW TO

Data
Type

JavaScript C# Python Java

Integer number int int int

Floating
Point

number
float or
double

float or
double

float or double

String string string str String

Represents whole numbers.
let my_whole_number = 1;

let my_decimal_number = 1.5;
Represents numbers with decimal points.

Represents sequences of characters
let my_text = “Hello!”;

Can only hold one of two values - true or false.
let true_or_false = true;

INTEGER

FLOATING POINT

STRING

BOOLEAN

DATATYPES TABLE

PYTHON

18

CODING -
EXAMPLES & HOW TO

JAVASCRIPT

19

CODING -
EXAMPLES & HOW TO

20

CODING -

PYTHON

JAVASCRIPT

The print function outputs text or data to the standard output, typically the
terminal or console.

Syntax: print(value), where value can be a string, number, or any other data
type.

The console.log method outputs text or data to the web browser's console
or a JavaScript runtime environment like Node.js.

Syntax: console.log(value), where value can be a string, number, object, or
any other data type.

EXAMPLES & HOW TO
PRINT() / CONSOLE LOG();

20

CODING -

Comments are lines in the code that are ignored by the interpreter or
compiler, allowing developers to leave notes or explanations within the
code. They are used to improve readability and provide context or
instructions without affecting the execution of the program.

In both examples, the text following # in Python or // in JavaScript is
ignored by the program and serves only as a note for anyone reading the
code.

EXAMPLES & HOW TO
//COMMENTS

