
INTRO TO CODE -
OVERVIEW AND ESSENTIAL
CONCEPTS

WEEK 3 - PART 1

LINNAEUS
UNIVERSITY
SUMMER 2024

TABLE OF
CONTENTS

3 what is code?

bits - basic units
of data

programming
languages

abstraction -
code libraries &
functions

thinking in code

code evolution

the coding process

what is a program

human language vs code

programming languages -
a comparison

syntax - examples

translating code

the essence of coding

18

19

7

10

9

12

17

5

6

15

13

20

A 1 might mean "yes" or "on," while a 0 might mean "no" or "off.
These binary digits serve as signals that the computer reads to perform
tasks and process information.

In the realm of computing, the binary system's use of just two symbols—1 and
0—demonstrates a remarkable capacity for complexity.

Morse code, which employs only two signals—a short beep and a long beep—
manages to encode and express an entire alphabet and complex messages
using just these two simple sounds.

Similarly, binary code leverages its two states to represent all forms of
digital data. Each combination of 1s and 0s in binary code can encode vast
amounts of information, from simple text to intricate graphics and
sophisticated software.

WHAT IS
CODE?

Code is the language we use to communicate with computers.
At its core, coding is about translating human intentions into a form that
machines can understand and execute. When we write code, we are
essentially creating a set of instructions that will be converted into binary
language, following a format of simple yes and no decisions that the
computer can process.

To communicate with the computer,
programmers break down complex tasks
into these simple
binary-like decisions, writing instructions
using these straightforward yes-or-no /
on-and-off choices.

Each instruction is translated into a binary
format - after all computers operate solely
on binary code, consisting of 1s and 0s.

3

4

This simplicity reflects how computers function at a fundamental
level. Computers are designed to recognize and process
electrical signals. A binary system perfectly suits this
requirement because it maps the two states—on and off—into
binary digits.

When you write code in a programming language, it is initially in a human-
readable format, such as Python or JavaScript.
This code is designed to be understandable by people, with syntax and
semantics that make logical sense.

However, computers cannot directly execute this
human-readable code. To bridge the gap between
human-readable code and what a computer can
execute, the code must be translated into a form
the computer understands—machine language.

The code gets converted to machine code, which is a series of binary digits
(1s and 0s) that the computer's hardware can process directly.

1 0 1 0 0 1 0 1

A computer’s hardware is made up of millions of tiny electrical circuits,
each of which can either carry an electrical current (on/1) or not (off/0).

Computers operate solely on electrical signals, meaning that everything
programmers do ultimately boils down to a series of on-and-off electrical
charges.

When a computer receives a binary instruction, it uses transistors—tiny
electronic switches—to control the flow of electricity. Transistors are
fundamental to this process, acting as gates that either allow current to pass
through (on) or block it (off).

5

Typically, these bits are grouped into sets of eight, known as a byte.
Consider an image file on your computer. The image is stored as a series of
bytes. For instance, a 1.1-megabyte image file contains about 8.8 million bits.
Each bit contributes to the overall image data, allowing the computer to
display the picture correctly.

These binary digits are called bits.
Each bit, short for binary digit, represents a single 1 or 0, and it is through
these bits that the computer carries out the instructions provided by the
program. Bits are the most basic units of data in computing—the atoms of a
computer. When millions of bits work together, they power everything a
computer does.

BITS -
BASIC UNITS OF DATA

1 BIT

8 BITS = 1 BYTE

A programming language is a formal system used to communicate
commands to a computer, enabling us to create programs that control its
behavior.

A simple instruction like adding two numbers might be
translated to a binary sequence like 11001010. When a binary
instruction (like 11001010) comes in, it tells specific

 transistors to either let electricity flow (turn on) or block it (turn
off). The result of all this switching on and off is that the computer

performs the desired action, like calculating a result or displaying an image
on your screen.

6

Writing programs in zeros and ones doesn't scale well—imagine trying to
remember the exact bits needed to represent a simple character like "h."

As coding evolved, the need for a more accessible way to program became
clear. The history of coding has seen an evolution towards making code
more and more like human language, culminating in programming
languages.

PROGRAMMING
LANGUAGES

HCHARACTER

BINARY VALUE

BITS

01101000

8

O

01101111

8

P

01110000

8

E

01100101

8

7

They use structured logic to perform tasks that allows a program
to make decisions and execute different actions based on certain
conditions.

Developers write code using programming languages such as Python,
Java, or C++, which allow them to write instructions in a more
human-readable form

HUMAN LANGUAGE VS CODE

Code itself consists of a series of statements and commands that specify
the desired behavior or actions to be taken by the computer, written in a
syntax that is specific to the programming language being used.

While programming languages differ in syntax, rules, and keywords—
much like how English and Swedish differ in grammar and vocabulary—the
core concepts remain similar.

For example, whether you're speaking English or Spanish, you can ask
someone to "please pass the salt" or "por favor, pásame la sal."

Just as human languages use verbs, nouns,
and tenses to convey meaning,
programming languages use similar
structures to express algorithms, perform
computations, manipulate data, and control
computer systems.

While the core idea behind code is the same,
different programming languages present
this concept in various ways.

8

Still, comparing computer languages to human languages reveals several
key differences.

Computer languages require strict adherence to syntax and grammar,
where even a minor error can disrupt the code.

Human languages, by contrast, are more flexible and can handle variations
in grammar and syntax.

Ambiguity also differentiates the two.
Human languages can be ambiguous, with words or phrases having multiple
meanings depending on context.
For example, asking "Do you want to do something?" can be interpreted in
many ways based on tone and context.

In contrast, computer languages aim to eliminate ambiguity with clear and
precise instructions.

Just as spoken languages have different ways to express the
same idea, programming languages use various methods to
give instructions to computers.

In programming languages, you might use different syntax to perform
a task, but each language is built on similar principles.

Python
is a versatile and beginner-friendly language known for its
simplicity and readability. It is widely used for web
development, scientific computing, data analysis, artificial
intelligence, machine learning, and automation.

9

Different programming languages excel at different tasks, even
though most can be used for a variety of purposes.

JavaScript
is primarily used for web development, enabling dynamic
and interactive features on websites. It is also commonly
used for frontend and backend web development, mobile
app development (using frameworks like React Native),
and server code.

Java
is a general-purpose language known for its platform
independence. It is widely used for building enterprise-
level applications, Android app development, large-scale
systems, and server-side development

C#
(pronounced "C sharp") is a language developed by
Microsoft and is mainly used for Windows application
development, game development using the Unity engine,
and building enterprise-level applications on the .NET
framework.

PROGRAMMING LANGUAGES -
A COMPARISION

10

Swift
is a language developed by Apple for iOS and macOS
app development. It is known for its safety features,
modern syntax, and performance. Swift is used to
create applications for iPhones, iPads, Macs, Apple
Watches, and Apple TV.

Despite these differences, at the end of the day, all programming languages
are ultimately translated into machine code—the binary code that
computers can execute.

C++
is a powerful and efficient language used for system
programming, game development, high-performance
software, embedded systems, and complex applications
that require low-level control and performance optimization.

SYNTAX - EXAMPLES

On the next page is a very simple line of code that prints "Hello, World!"
to the screen, written in Python, JavaScript, Java, C#, C++, and Swift.

This is one of the most basic examples you’ll encounter when
starting with any programming language.

Don’t worry if there are parts you do not understand - this is simply to
visually highlight differences and similarities between the different
programming languages!

PYTHON

JAVASCRIPT

JAVA

C#

C++

SWIFT

11

print("Hello, World!")

console.log("Hello, World!");

public class Main {
 public static void main(String[] args) {
 System.out.println("Hello, World!");
 }
}

using System;

class Program {
 static void Main() {
 Console.WriteLine("Hello, World!");
 }
}

#include <iostream>
int main() {
 std::cout << "Hello, World!" << std::endl;
 return 0;
}

print("Hello, World!")

An interpreter translates code line-by-line, executing
each line in real-time, much like a
real-time translator who translates a conversation on
the fly. This allows for immediate feedback and easier
debugging. For example, Python uses an interpreter to
run code interactively, translating each instruction into
binary as it is executed.

For example, when you write JavaScript code for a website, your web
browser acts as an interpreter. It reads and executes the JavaScript code
on the fly, line-by-line, directly in the browser. If there’s an error or if the
code needs to change, you see the results immediately.

A compiler, on the other hand, is like a translator who first translates an
entire book into another language before anyone reads it.
For example, when you write Java code, a compiler takes all of your Java
code at once translates it into machine code, and packages it into a file,
such as an .exe file. Once a program is compiled into an executable file, you
can run it on any computer without needing the original code or any special
software to translate it.

This translation is performed by tools called compilers and interpreters.

A compiler takes the entire code and translates it into
machine language all at once, resulting in an
executable file. This file contains the binary
instructions that the computer can run directly.
For example, a compiler might convert a C++ program
into a binary file that can be executed on a computer.

12

TRANSLATING CODE
Despite their different syntax, all programming languages must
ultimately be translated into binary code—1s and 0s—for the

computer to understand and execute the instructions. This translation
bridges the gap between human-readable code and the binary language
that computers use.

Starting from binary code and low-level languages, we have evolved to
high-level languages, which simplify programming by abstracting away
complex hardware details and making code more intuitive and easier to
write.

High-level programming
languages are designed to be
more user-friendly,
providing a simplified, user-
friendly interface, and are much
closer to human language.

These are called "high-level"
because they provide a higher
level of abstraction away from
the hardware. They are designed
to be closer to human language,
making them easier for
programmers to understand and
use. High-level languages handle
complex details of the
computer's hardware and allow
programmers to write code that
is more intuitive and less
concerned with the underlying
machine operations.

GUIS

ASSEMBLY
LANGUAGE

BINARY

HARDWARE

HIGH ABSTRACTION

HIGH LEVEL
LANGUAGES

13

Programming languages vary in how closely they resemble the binary code
that computers understand directly. This variation is referred to as the level
of abstraction.

LOW ABSTRACTION

CODE EVOLUTION

Consider a simple task like adding two numbers.
In a high-level programming language like Python, you can write
result = 5 + 3 to get the sum.

This code is easy to read and understand, thanks to its high level of
abstraction. These higher-level languages also help us take care of "low-level
details"—like how data is stored in memory, how to manage the processor's
time between tasks, etc.

In contrast, when working with low-level languages such as Assembly or
machine language (binary code), you would need to write multiple lines of
code to perform tasks like loading numbers into registers, executing the
addition, and then storing the result. This low-level code requires more
detailed and precise instructions compared to higher-level languages.

14

The more abstract languages still all boil down to the
same ones and zeros - we've just found better ways
to organize them, and “hide them” behind easier to
understand, human-like language.

In contrast, low-level programming languages are called
"low-level" because they operate much closer to the
hardware. The lower down we are on the chain of abstraction,
the closer we get to binary code—the ones and zeroes at the
core of computing.

Low-level languages provide direct access to the computer's hardware,
meaning that the details of how the computer works are exposed and must
be managed by the programmer. They require more detailed and specific
instructions about how to control the computer’s components, such as the
memory and processor.

As programming languages evolved, programmers frequently encountered
similar tasks and challenges. To address this, they began adding pre-defined
functionality into the language that could handle these common tasks.

This way, when other programmers use the language, they can access these
built-in functions, which makes coding more efficient and reduces the need
to repeatedly write the same code. These functions are included in libraries-
collections of pre-written code designed to perform common tasks. When
you download a programming language, it typically comes with a set of these
libraries, giving you access to a range of built-in functions right away.

Without using functions, you might
have to manually write out every
step of the addition process,
including converting numbers to
binary, performing bitwise
operations, and handling carry-over
values.

Think about a coffee machine. When you use a coffee machine, you press a
button for “coffee,” and the machine takes care of grinding beans, heating
water, and brewing the coffee. You don’t need to understand how each part
of the machine works internally. You just enjoy the result—your coffee.
Similarly, in programming, using math.add is like pressing the coffee button.
You don’t need to manage the intricate details of how addition is performed
internally; you just use the function and get the result you need.

15

ABSTRACTION -
CODE LIBRARIES &
FUNCTIONS

By using “math.add” or “math.subtract,” we place all related mathematical
functions under one easy-to-understand label, “math.”
This approach makes the code simpler and more organized, as it lets you
access these functions without having to write out all the detailed code
yourself.

These functions are included in the language's library, so you just need to
know how to use “math.add” or “math.subtract” to get the results you
need, rather than coding each operation from scratch.

This approach is more abstract because it groups these operations under a
user-friendly label - “hiding” these detailed instructions inside other code or
functions - making the code easier to read and manage.

In programming, using math.add is like pressing the coffee button. You
don’t need to manage the intricate details of how addition is performed
internally; you just use the function and get the result you need.

16

When coding, writing “add” is simpler than working with binary
code “01000111”.

Now, if we group the functionality for “add” and “subtract” under a
single category called “math,” we simplify how we think about
these operations - and how we use them.

17

Computers only understand 0 or 1, yes and no, on and off.
This binary approach translates into a "yes or no" logic - a way of
thinking and communicating without ambiguity. After all, a switch cannot
be partially turned on or off.

When programming, expressing your instructions in this binary logic helps
us to frame conditions and decisions in a way computers can understand.

Suppose you want to control a light based on whether it's day
or night.
The condition you're checking is whether it’s daytime or
nighttime.

You need to formulate this condition in a way the computer can
understand, using a binary approach where the condition results in either
true (1) or false (0). For simplicity, let’s say you check if it’s daytime. If it is,
you want the light to be off; if it’s nighttime, you want the light to be on.

Daytime Check: Is it daytime? (Yes = 1, No = 0).
Based on the result of this binary check, you instruct the light to turn on or
off. Think of the condition as a question with a clear "yes" or "no" answer.

For instance, "Is it daytime?" translates to a binary outcome:
Daytime (Yes = 1), Nighttime (No = 0).

In code, it might behave like this:
Check if it_is_daytime is true (Yes = 1).
If Yes (1): Turn off light.
If No (0): Turn on light.

THINKING IN CODE

Coding is a systematic, multi-stage process that involves several
key stages: writing instructions, testing, and deploying them to
various environments.

Initially, developers write code using a programming language, such as
Python, JavaScript, or Java. This code, written in an Integrated
Development Environment (IDE), consists of statements and commands
that direct the computer to perform specific tasks.

The IDE operates within a runtime environment necessary for the IDE to
execute the code—like Node.js for JavaScript—installed on the developer's
computer. For instance, when building a website, developers can code and
immediately test their work within this local environment.
While coding, they can run the code to see if it behaves as they want.
If working on a website, they can start up their website locally on their
computer with the code they’ve written. It will behave like the finished
website, and the programmer can test it to make sure that everything is
working properly by executing the code inside the IDE to see how the
finished website will look and to identify and correct any errors.

Once the code has been tested and refined, it is
deployed to various environments where it will be
used.

Deployment involves transferring the code from the
development environment to its intended operating
environment - moving the code to where it will be used.
This may involve placing the code on a web server for a

website, uploading it to a cloud platform for an application, or transferring
it to other computing devices.

Deployment makes the executable code available for users to interact
with.

18

THE CODING PROCESS

This code snippet is a basic example of how programming languages allow
us to write instructions that the computer can execute to perform specific
tasks - a simple Python program that asks for your name, then greets you
with "Nice to meet you, [Your Name]!"

When you run this code, it will prompt the user to enter their name and then
greet them with a personalized message.

Had we put the code to say "Nice to meet you, [Your Name]!" first,
the computer would not have had any input form the user yet,
and would not have saved any name to the computers memory.
When it would have looked for the name in it’s memory, there would
have been nothing to retrieve from it’s saved data - and the program
would have failed and given an error.

19

WHAT IS A PROGRAM
A program is a collection of instructions that are written in code
whose job is to carry out a specific task or set of tasks - a
sequence of coded commands that are designed to be executed by a
computer or other computing devices.

It can be as simple as a few lines of code or as complex as a large software
application, and perform a wide range of tasks, such as mathematical
calculations, data processing, file manipulation, user interaction, and more.
Each instruction has a specific purpose and action associated with it.
Programs frequently handle data, including user inputs, stored files, and
information produced during their execution. They use this data to perform
tasks like processing, modifying, and analyzing it.

20

That’s what coding is at its essence.
It’s taking something we understand, like a set of instructions, and
translating it into a language that a computer can execute.

In this way, coding bridges the gap between human thought and machine
action.

Some people see coding as a form of logic, where the act of coding involves
translating what we want to achieve into a series of logical statements.
Others view it as a way of communicating with machines, where coding is
essentially the process of speaking the machine’s language to convey
instructions.

Each programming language, from Python to Java, has its own syntax and
set of rules, but they all serve the same fundamental purpose. By learning to
code, we gain the ability to communicate with machines, create software,
and build systems that power everything from smartphones to space
exploration.

THE ESSENCE OF CODING

