WEEK 4 - PART 2
WEB DEV 101 -

FRONT-END, BACK-END &
CLIENT-SERVER MODEL

TABLE OF
CONTENTS

what is web html

development? css
javascript

front-end &

back-end

how it works S

client-server vs
front-end/back-

end

client-server N
front-end in detail 8
back-endindetail 9
putting it all together 1o
HTTP, HTTPS &

communication 11

front-end vs back-end
development 12
server-side rendering vs
front-end rendering 13

json 15

the big 3 of client
side

programming _/W

WHAT IS
WEB DEVELOPMENT?

Web development is the process of building and maintaining websites and

web applications. The web operates through a series of interactions
between your browser (the front-end) and a server (the back-end).
Front-End evelopment - focuses on what users see and interact with in their
web browsers. Front-end development involves creating the visual

layout and user interface of a website or web
application. For example, front-end developers
design the look and feel of a website, including its
colors, fonts, and layout, and add interactive
elements like buttons and forms.

Back-End development focuses on the server-side
of web development, where the behind-the-scenes
processes occur. Back-end development involves
managing databases, server code, and application
integration. It ensures that data is correctly
processed and stored, and that it flows seamlessly
to and from the front-end.

A website is a collection of web pages that users can access through a web browser.
It’s designed to provide information, services, or interactive experiences to users.
I[tprovides the visual and interactive elements that users interact with, such as text,
images, forms, and buttons. Websites display content and features that users engage
with, such as reading articles, watching videos, or filling out forms.

Imagine a website as a shopfront. The shopfront (website) displays various products
(content) that you can browse and interact with, like looking at items in a window or
asking for help.

When users interact with a website, data flows back and forth between
their web browser and the server.

A server is a powerful computer or software system that stores, manages,
and processes data. It acts as the central hub that provides resources,
services, or data to other computers (clients) over a network, such as the
internet.

The server stores various types of data, like user profiles,
articles, images, and other content. When a web browser

makes a request, the server processes this request,
performs necessary operations, and prepares the data to send back.

Think of a server as a library. When you want a specific book (data), you ask
the librarian (server). The librarian then retrieves the book from the shelves
(database) and hands it to you.

Server code is stored on the server's hard drive, much like how files are
saved on your own computer.

Servers can be of two main types - physical servers or virtual servers.

Physical servers are real, tangible computer housed in a data center, which
is a large facility full of computers.

Virtual servers are virtual machines that operate within another physical
computer. It’s akin to having a mini-computer inside a larger one, and it is
often hosted in the cloud-a vast network of powerful computers accessible
over the internet.

In essence, server code is saved on these servers—whether physical or virtual
—that are specifically designed to manage and process requests from
websites and applications.

FRONT-END &
BACK-END

HOW IT WORKS

Interaction - You interact with the website (e.g., clicking a button).

Request - Website sends a request to the server (e.g., showing a message).
Processing - The server processes the request and fetches the needed data.
Response - Server sends the data back to the website.

Display - Website updates and displays the data for you to see.

0 User Interaction with the Browser (front-end)

You, as the user, interact with a website through your web browser.

This interaction involves:

e Navigating: You enter a URL or click on links to visit different web
pages.

e Submitting Forms: You might fill out forms, such as login
credentials or search queries.

e Clicking Buttons: Actions like clicking "Submit," "Add to Cart," or
"Like" trigger events.

Example: You visit an online store, choose a product, and click the
“Add to Cart” button.

@ Sending Data to the Server (back-end)

When you perform an action on the front-end, your browser sends a
request to the server. This request might include:
e« Form Data: Information you’ve entered into a form (like your
username and password).
e Requests for Information: Such as asking for product details or
searching for items.

Example: Clicking “Add to Cart” sends a request to the server with

details about the product you want to add. \/\/\

@ Server Processing (back-end)

The server receives your request and performs various
tasks:

o Data Retrieval: It may look up information in a database.

o For example, if you’re logging in, the server checks if your
username and password match what’s stored in the database.

o Data Manipulation: The server may update or process data based
on your request. For instance, adding a product to your cart
requires updating your cart’s contents in the database.

e Business Logic: The server executes any required logic or
calculations, like computing the total price of items in your cart.

Example: The server checks the database to confirm your login
credentials and updates your shopping cart with the selected
product.

@ Sending Data Back to the Browser
After processing your request, the server sends the relevant data
back to your browser. This data includes:
e Updated Content: Such as a confirmation of your successful login
or an updated cart summary.
« New Web Pages: The server might send a new page or update the
existing one with the requested information.

Example: After adding an item to your cart, the server sends back an
updated cart summary showing the new product and total price.

@ Updating the front-end

The browser receives the server’s response and updates the user

interface accordingly:

o Display Changes: The web page or application reflects the
changes, such as showing your updated cart or redirecting you to

a new page.
e Interactive Feedback: Any feedback from the server, like success
messages or error alerts, is shown to you.

Example: Your browser now displays a notification that the product
has been successfully added to your cart, and the carticon is
updated with the new item. o o o o o o o o

CLIENT-SERVER
VS

FRONT-END / BACK-END

CLIENT-SERVER

The client-server model is a way of organizing how data and services are
provided across a network, like the internet. The model defines how
different parts of a system interact over a network.

In computing, a "client" refers to any device or software that is responsible
for sending requests for services or resources from a server. It is the
component that interacts with the user, often through a web browser or
app on a device. For instance, when you enter your username and password
and click "Log In," your browser (the client) sends this information to the
server. The client is responsible displaying the results to the user.

The server is a powerful computer that stores and processes data.

It receives requests from clients, handles them by processing or retrieving
data (such as querying a database), and sends back the appropriate
information or responses. For example, when the server receives your login
credentials, it checks them against its stored data and
sends back a confirmation message or an error,
depending on the result.

FRONT-END IN DETAIL

The terms front-end and back-end refer to different aspects
of web development and the architecture of web applications.

When discussing a web application's architecture, we are talking

about the structured design and organization of various components

and how they work together to deliver functionality to users. This
architecture essentially serves as the blueprint for how a web application is
built and operates.

The front-end is the part of a web
application or website that users
interact with directly.

It encompasses everything visible in
the browser, including layout, design,
and user interface elements.

Technologies used in the front-end
include HTML, CSS, and JavaScript.
The front-end's primary role is to

provide the user interface and handle FRONT-END
user interactions.

In a web application, the front-end
sends requests to the back-end.

The front-end, which is responsible for the user interface and user
interactions, collects data and triggers requests based on user actions.
These requests are sent to the back-end, where they are processed.

The back-end performs the necessary operations, such as retrieving or
updating data, and sends the results back to the front-end to be displayed
to the user.

BACK-END IN DETAIL

The back-end operates on the server and is responsible

for processing requests, managing data, and running the
application’s logic - referring to the general rules and
procedures used to perform various operations within a web
application.

It encompasses the decision-making processes and algorithms that
handle how different pieces of data are manipulated, displayed, or
used.

The back-end also handles the business logic - the rules and
processes that enforce the policies and procedures of the business.
Business logic dictates how data is created, stored, and manipulated
according to the specific needs and requirements of the business or
application.

For example, in an e-commerce application,
business logic might handle rules related to
pricing, inventory management, order
processing, and customer discounts.

This data processing, and database
interactions that are not visible to users but
o are essential for the application’s
functionality.

BACK-END Server-side logic, on the other hand, refers to
the processes and computations that occur
on the server in response to client requests.

PUTTING IT ALL TOGETHER

When you visit a website or take an action, your browser
(the client) sends a request to the server. The server processes the
request and sends a response back to the browser.

This response contains the data or results needed by the front-end to
update the user interface.

FRONT-END BACK-END

.
Web App Mobile App Server

<> <f»
HTML is

While web browsers are common examples of clients, there are many
other types of devices and applications that also function as clients, such
as smartwatches, and smart devices (such asaSmartTVor a

Smart Home Hub).

The client is (which is your web browser in this case), sends requests to the
server—a computer that stores the website’s code and data.

The server processes these requests and sends back the results, which the
client then displays.

The front-end is the part of the system you interact with directly - the
user-facing part of the application on the client side, including its visual
elements. In contrast, the back-end encompasses the server-side
components. It handles the work behind the scenes, such as processing
data and handling requests, and providing information to the front-end.

HTTP, HTTPS & COMMUNICATION

When sending a request from the server, it processes the
request and sends a response back to the browser over the internet,

utilizing network protocols that ensure secure and reliable
communication. These protocols manage the traffic, directing data
between the server and browser while verifying that the information
is transmitted correctly and efficiently.

Request for Webpage
D [] [] [] [] [] [] | [] [] [] [] [] [] [] e
3 ° ° ° ° ° ° | /————‘—\‘—’ ° ° ° ° ° ° ° L
J [] [] [] [] [] [] ! ‘___ __—__—'-— [] [] [] [] [] [] [] e
s e _rxrrrrrrrr, Response with Webpage (o] e m
| Client | Server

The interaction between the front-end and back-end relies on HTTP
(HyperText Transfer Protocol) and /HTTPS (HTTP Secure) protocols - the
fundamental protocols used for communication on the web - for
exchanging requests and responses over the web.

HTTP is the standard protocol for transmitting data between a web browser
and a server, used to request and deliver web pages and other resources.

HTTPS, a secure version of HTTP, uses encryption (SSL/TLS) to protect the
data being transmitted, ensuring privacy and security, especially for
sensitive information like passwords or payment details.

Today, HTTPS (Hypertext Transfer Protocol Secure) is far more common
and widely used compared to HTTP - according to recent statistics, over
90% of websites visited on major browsers are using HTTPS.

When you visit a website or perform an action, such as submitting a form
(the front-end), your browser (the client) sends an HTTP/HTTPS request to
the server (the back-end).

The server processes this request and sends back an HTTP/HTTPS response
containing the requested data or results. This process involves a

continuous exchange of messages between the client and server, W
where the client makes requests and the server provides responses.

N\

FROI‘\II'Ié-END
BACK-END DEVELOPMENT

Programmers who work with front-end development focus on creating the
parts of a website or web application that users interact with and see,
such as the layout, visual design, and interactive elements.

This includes creating responsive layouts, and interactive features, and
ensuring a smooth, user-friendly experience. They optimize performance,
ensure compatibility across browsers, and use technologies like HTML,
CSS, JavaScript, React, and Angular.

Back-end developers handle servers, and databases, and write
applicationlogic that operates behind the scenes. They ensure that the
functionality and data management supporting the front-end run
smoothly. This involves managing databases, writing server-side code,
and implementing both application logic and business logic.

On the back-end, programmers handle data processing, security measures,
and server maintenance to ensure smooth functionality. Technologies often
used include languages like Python, Java, Ruby, and tools for managing
servers and databases.

As a full-stack developer, you handle both front-end and back-end
development. This means designing user interfaces, creating interactive
features, and managing server-side logic and databases.

You integrate all parts of the web application, and oversee deployment and
maintenance. You work with a wide range of technologies from both front-
end and back-end.

SERVER-SIDE RENDERING VS
FRONT-END RENDERING

Imagine you’re setting up a new bulletin board. First, you hang up the
board and put up some basic outlines or placeholders.

As you receive updates from people-like event flyers, photos, and notes—
you attach these to the board in the right spots based on what you need.

Similarly, the browser sets up the basic structure of a web page and then
fills in the text, images, and other content based on the user’s requests.
The input from users sends requests to the server, and after processing, the
server sends back the requested content to the browser (front-end). This is
what makes the page complete and ready for viewing.

The data that the front-end of a web application gets from the back-end
includes things like text, images, or other types of content that the page
needs. Once the browser receives this information, it processes that

data to fit into the web page.

The browser updates and displays the new content—the data from the
server—such as text, images, and other elements, by filling in the
placeholders in the existing layout. This ensures that the web page remains
interactive and visually coherent as it dynamically integrates the new data.

This dynamic process of filling in
placeholders and updating content
highlights how the front-end and back-
end of a web application work together to
deliver a seamless user experience.

Depending on how the content is delivered to the browser, this interaction
can occur in different ways.

However, the method by which content is rendered and displayed on the
page can vary, depending on whether the rendering is done on the server or

the client. o o
e o
e o
o o
e o

Server-side rendering means that the web page is created on
the server before it is sent to your web browser.

The server prepares the entire web page before sending it to your
browser, and you get a fully formed page ready to be displayed
immediately.

When using server-side rendering (SSR), the server generates the
complete HTML for a web page and sends it to the browser, including
embedding all the text, images, and other content directly into the HTML
structure. The front-end receives a complete page, with all the content
already in place.

Once the page is loaded, JavaScript and other front-end resources may
enhance the page’s interactivity and visual quality. For example, client-side
scripts can still add dynamic features such as animations and handle user

input.
" " " " ° ° Front-end rendering, also known as client-side rendering (CSR),
* * ° ® ° ® °® meansthat the web page is built in your browser after the

initial HTML is received from the server. CSR relies on the
* ¢ ¢ ¢ ¢ ¢ ¢ prowsertodomostof the work, building the page after
e e o o o o e receivingabasic HTML shell and JavaScript from the server.

This allows for more dynamic and interactive user experiences but often
comes with the trade-off of slower initial load times. The server sends a
minimal HTML layout- just a basic structure without the full content.

The browser then builds the web page using the HTML, CSS, and JavaScript
it receives from the server - these files contain the code needed to
dynamically build the content of the page.

Once the JavaScript runs, it dynamically generates the content and inserts
it into the HTML structure to build and populate the page.

As the browser builds and styles the page on-the-fly after executing these
scripts, the full content may take longer to appear compared to server-side
rendering (SSR). However, front-end rendering enables highly interactive
web pages where parts of the page can update dynamically without needing

a full page reload.

JSON

Imagine a universal language that makes sure both sides of a

conversation can understand each other, no matter what system
or software they are using. That’s a data interchange format.

A data interchange format is a standardized method for formatting data so
that it can be easily transmitted and understood between different
systems.

One of the most commonly used ones is JSON (JavaScript Object Notation),
especially within web development.

JSON is a lightweight data-interchange format that is easy for humans to
read and write, and easy for machines to generate and parse.

Parse means that systems (servers, browsers, databases, and applications)
can analyze and interpret JSON to receive data or convert it into a format
that other systems can understand and use. JSON is also very flexible,
supporting various types of data, including text, numbers, lists, and nested
information.

:"Ellen Nu",

2

31
IIMathII,
"Programming",

"Graphic Design"

:{
:"123 Main St",
:"Anytown",
:"2345"

JSON is commonly used to transmit data between a server and a
web application as part of client-server communication and
plays a crucial role in how dynamic content is loaded and displayed on a
web page when using front-end rendering.

When you visit a web page, the browser gets a basic HTML file that might
not have all the data - such as the text content asked for.

After the initial HTML is loaded, the JavaScript running in the browser then
asks the server for extra data, usually in JSON format.
The server sends this data back in JSON format.

The front-end of the web page takes this JSON data and integrates it into
the appropriate elements in the HTML structure. For instance, if the JSON
contains a user’s name and bio, the front-end will insert this information into
designated spots on the web page, like a user profile section.

This means that the web page processes JSON data to display contentin a
way that matches the design of the site, allowing the content to be
rendered and styled according to the page's design but still display user-
specific content based on the data received.

THE BIG 3 OF
CLIENT SIDE

PROGRAMMING

Three fundamental technologies play a crucial role in this field: HTML, CSS,
and JavaScript.

Each of these technologies serves a distinct purpose and collectively
contributes to the interactive and visually appealing web experiences we
encounter today.

HTML structures the content, CSS styles the appearance, and JavaScript
adds interactivity, collectively contributing to the dynamic and visually
appealing web experiences users encounter.

Skeleton Skin
Content Presentation

<!DOCTYPE html> H T M L <meta charset="utf-8">

<title></title>
Ll <head></head>

<oy HTML (HYPERTEXT

<h1></h1> <hd></ha> M A R K U P LAN G UAG E)

<h2></h2>
<h5></h5>

<h3></h3> <h6></h6>

<p></p>

</body>

HTML (Hypertext Markup Language) is the backbone of web content - the
skeleton. It provides the structure for webpages.

It defines the hierarchy and layout of content on a webpage, specifying its
organization and structure by using HTML tags to arrange the content,
making it easy for browsers to understand how to display the information.
Using HTML for layout helps in organizing content visually. For example, using
<div> tags to create containers for different sections, or using tags to
create lists.

HTML uses elements and tags to create the basic building blocks of a
webpage. Elements in HTML include headings, paragraphs, links, images,
lists, and more.

HTML also dictates how these elements are nested and ordered.

For instance, the <header> tag typically contains navigation at the top of the
page, while the <main> tag holds the primary content. Other tags like
<footer>, <article>, and <section> define different parts of a webpage.

[J [[J [J] [J [J [J
[} [J [J [J (] [J [J [J
° ° ° ° >My First Webpage</ ° ° ° °
[J [] [J o [] [J o [J
=
° . ° ° <hl>My First Webpage</hl> ° ° ° °
<p>This is a paragraph.</p>
[J [[J [J ([] [J [J [J

HTML, similar to Markdown, has specific rules for formatting that affect
how content is displayed. While the written HTML code may appear plain,
it renders differently in a web browser, where the content is styled and
organized according to the markup instructions. e o o o

header{

(CASCADING STYLE

}
} .

header { ;ldelfaylh .

font-style:bold; g oatright;

' main{ il
font-size:14px; font-family:Arial, Helvetica;i
} }

CSS (Cascading Style Sheets) is the design language used to style and
layout web pages, enhancing the visual appearance of HTML content.
It acts as the "skin" that decorates the "skeleton" provided by HTML.

CSS defines the look and formatting of a webpage, specifying how HTML
elements should be styled and arranged.

By using CSS rules, you can control various aspects of a webpage's
appearance, such as colors, fonts, spacing, and positioning, making it
visually appealing and easy to navigate. For example, CSS can be used to set
the background color of a page, adjust the font size of headings, or arrange
elementsin a grid layout.

CSS utilizes selectors and properties to apply styles to HTML elements.
Selectors target specific elements or groups of elements, while

properties define the styles. For instance, a selector like h1 might be used to
apply styles to all <h1> headings, specifying properties such as color and

font-size.
o o
o o
o o
o o
o o

DAWVASITRI)

JavaScript is a dynamic programming language used to add interactivity
and functionality to web pages, bringing life to the static structure
provided by HTML and styled by CSS. It acts as the "brains" of a webpage,
enabling complex behaviors and interactions.

JavaScript defines how elements on a webpage behave and respond
to user actions, adding interactivity and functionality to the site.

It allows you to create interactive features such as form validation,
animations, and dynamic content updates. For example, JavaScript can be
used to validate user input on a form, create a carousel that rotates images,
or load new content without refreshing the page.

JavaScript utilizes functions and events to manage behavior and
interactions. Functions are blocks of code that perform specific tasks, while
events are triggers for executing these functions.

An event is triggered when a specific action or condition occurs, such as a
user clicking a button—-when a predetermined action happens, the function
designed to respond to that event runs. For example, if a user clicks a
button, the “click event” is triggered, and the JavaScript code written to
handle that event (e.g., showing a message or revealing additional content
on the page) is executed.

JavaScript can change the content, structure, and styles of elements
dynamically. For example, you can use JavaScript to update the text of a
paragraph or change the color of a button based on user actions.

" button
input ant.getE tById("userinput");
ul ¢ [) \ L")

wputlength() {
input.value. length;

lement (" 11i");
. e(input.value));
ul.apj
input.val

s(e) {
event.keyCode

button.

input.:

isPrime(num) {
if (num <= 1)

eturn sum;

1 generateFibona quence(count) {
= [1;
for (let @; 1 < count; i++) {
ence.push(fibonacci(i)

1-
J
r

eturn s

