WEEK 2 - PART 1

PROGRAMMING
ENVIRONMENTS -

COMPONENTS, TOOLS, AND
PLATFORMS




TABLE OF
CONTENTS

what is an
environment?

key components -

programming
environments

operating systems . 4
programming languages 4
runtime environments 5
nodejs 6
CPython o}
virtual machines -vm’s 6

° development tools

& environments
development tools 7

development
environments 8

IDE - Integrated
Development

Environment 8
Vscode 10
extensions 1
packages 12

npm
pypi
online IDE’s




WHAT IS
AN ENVIRONMENT?

In the context of programming, the term "environment" often appears and

can be challenging to grasp because it can apply to various aspects and
areas within programming. For instance, if you are using a Mac computer,
you are working in a MacOS environment. Similarly, if you are working in an
Integrated Development Environment (IDE), that too is considered an
environment.

Broadly, a programming environment
refers to the combination of the
underlying hardware, software, and
settings in which a program is developed
and executed. In addition to its more
abstract meanings related to system

configuration and context, "environment" 000
. L SR BSET T 1L T
can also refer to specific applications or mislaalelelclc] ] [Ty

software.

The term “environment” encompasses
everything necessary for the code to run
correctly and produce the desired results.
Each software environment serves a

distinct purpose.

Additionally, different environments come with varying requirements,
capabilities, and performance characteristics, making it essential to
choose the appropriate environment for a specific programming task.




KEY COMPONENTS -
PROGRAMMING
ENVIRONMENTS

OPERATING SYSTEMS

The operating system serves as an environment in computing by managing
computer hardware and offering underlying essential services for other
software programs. It oversees critical functions, thereby

providing a stable platform where applications can operate and interact
with hardware efficiently. Operating systems are responsible for managing
the entire computing environment, including system resources, user
interfaces, and application execution. They provide a broad and
general-purpose environment that supports all types of applications and
services on a computer - including other environments.

PROGRAMMING LANGUAGES

Programming languages are typically not directly executable by a
computer's hardware. Instead, they require a compiler or an interpreter to
translate the code into machine-readable instructions.




A compiler translates the entire program into machine code
all at once, while an interpreter executes the code line by
line, translating it as it runs.

Each programming language has its own syntax and rules, which
determine how code is written and executed. To start coding in a
specific programming language, you'll need to download and install
the appropriate environment for that language. Additionally, you may
need to download libraries and frameworks specific to that language.

RUNTIME ENVIRONMENTS

A runtime environment provides the necessary infrastructure, tools, and
services for executing a specific application or running code in a specific
programming language.

Runtime environments are often specific to a programming language or
platform. They abstract the complexities of the underlying hardware and
offer a standardized platform for developers to write and run their
applications. Runtime environments typically include components such as
libraries, interpreters, and virtual machines that are required to run
programs written in a particular language.

A runtime environment abstracts low-level
details (more advanced features that operate in
the background for software to run properly) and
provides a consistent execution environment for
programs written in a particular language. It
manages technical tasks necessary for the
program's operation, allowing developers to focus

on writing code rather than system-level operations.

It handles all the essential behind-the-scenes tasks required for the
program to function properly, which may not be visible but are crucial for its
operation.




Runtime environments also provide a consistent execution
environment, meaning they offer a reliable and predictable
setting for your code to run. Regardless of whether your
program is executed on someone else's computer or on a server
anywhere in the world, the runtime environment ensures that it
behaves consistently across all these systems and configurations.

For example, if you're working with JavaScript,
you'll need to set up the appropriate
development environment for the language.

This typically involves installing Node.js, which
provides the JavaScript runtime environment
necessary for executing JavaScript code
outside of a web browser.

Similarly, Python requires you to install a
Python interpreter to execute Python scripts,
with CPython being the most common and
widely used runtime environment.

These components collectively provide the
necessary tools and infrastructure to write,
test, and execute your code effectively on
your computer.

VIRTUAL MACHINES - VM’S

A virtual machine is a software emulation
of a physical computer system.

It allows you to run multiple operating
systems or environments within a single
physical machine.

Each virtual machine operates
independently and includes its own
operating system along with all the code
necessary for its operation.




This means that the computer you're working on has its own
operating system, and the virtual machine has an additional
operating system running within it.

While it tends to take up more memory and repeat code, it's very
useful for testing and isolating different environments. While it
tends to use more memory and can duplicate code, it is very
useful for testing and isolating different environments.

By utilizing virtual machines, users can quickly create and
discard multiple isolated environments, reducing the risk of
software conflicts and enabling safe experimentation with new
configurations.

DEVELOPMENT
TOOLS &

ENVIRONMENTS

DEVELOPMENT TOOLS

Development tools are software applications and
utilities designed to aid in the creation, testing,
debugging, and management of software
applications. While development tools are
essential components of development and
runtime environments, they are not all considered
environments themselves.

Development tools are used within these
environments to facilitate various stages of the
software development lifecycle. e e e 00 e




DEVELOPMENT ENVIRONMENTS

A development environment is a comprehensive setup that
includes all the tools, libraries, and configurations required
for software development.

It is a general term, encompassing, among other things, integrated
development environments (IDEs), code editors, debuggers, compilers, and
other essential tools. This environment provides everything needed to
write, test, and debug code, offering a complete and cohesive platform for
developers to create software efficiently.

IDE -
INTEGRATED DEVELOPMENT
ENVIRONMENT

An Integrated Development Environment (IDE) is software that works as a
centralized platform providing a comprehensive set of tools and features
for software development. Think of an IDE as a word processor for code,
with far more functionality than just writing code.

Visual
PyC.harm Studio Code  Sublime Text Vim GNU Emacs
L] [ ] [ ] [ ] [ ] ° [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ [ ] [ ] [ ] [ ] [ [ ]

Spyder Atom Jupyter Eclipse Intelli) IDEA MNaotepad++

° ° ° o ﬁ jwr e— %E:L ° ° ° °

IDE’s provide a code editor with features such as syntax highlighting, which
helps with writing in a specific programming language; auto-completion,
which speeds up coding by suggesting possible code completions;

code cleanup, which helps in organizing and removing unnecessary code; and
code formatting, which ensures consistent and readable code structure.

U\
NN




IDEs facilitate project organization by allowing
developers to create and manage projects with
multiple files and folders. They provide tools for creating
new files and folders and for navigating between
different parts of the project.

They often visually represent the actual folder structure, offering
a visual method for developers to navigate and organize their files
and folders within the IDE.

IDEs also include tools for automating application builds and
deployments. Deployment refers to delivering code to a platform
where users can access the software. IDEs can help compile code,
package applications, and deploy them to specific environments or
platforms.

IDEs often include built-in tools to compile source code into executable
formats. This is essential for languages that require compilation, such as
Java. Compilation translates human-readable code into machine code that
can be run on computers.

gulpfile.js =

TERMINAL 1

P main 2041t @OA0 Ln17, Col3 Spaces:2 UTF-8 LF {} JavaSeript & 0




IDEs also help in packaging the compiled code and related
resources (like configuration files and libraries) into a
deployable format. This might involve creating executable files,

application archives (such as .zip or .tar files), or installers.

The structure of IDEs—a single program with a unified interface combining
different tools and features into one easy-to-use screen — helps facilitate
programming in one central place.

There are many different IDEs, some general purpose, and some more
specialized for a specific language. There are even online IDEs, where you
can code without setting up runtime environments or downloading the
necessary development tools and environments!

VSCODE

VSCode is a very popular IDE, widely used due
to its extensive features and customizability,
enhancing functionality and tailoring the
development environment to individual needs.

VSCode also includes a built-in terminal that
functions like any other terminal.

While it appears integrated into VSCode’s
unified interface, you are still actually working
with the terminal on your computer.

Most tutorials on YouTube use VSCode, and it is widely regarded as a staple in
the programming community.

In Visual Studio Code (VS Code), you can choose which terminal to use directly
within the integrated interface. For example, you can open PowerShell inside
VS Code; while it appears seamlessly integrated into VS Code's unified
interface, you are still operating the computer's terminal.




EXTENSIONS

VS Code, as it is, comes as a blank slate with only basic
functionalities. To customize the user experience, users can download
extensions. These small add-ons enhance or modify the application’'s
functionality, expanding the editor's capabilities beyond its out-of-the-
box features.

Extensions integrate with VS Code, enabling the addition of new features,
tools, themes, and more to customize and tailor the development
environment to specific needs. Extensions can be simple, like changing the
look of the interface with themes and icons, or complex, like adding tools
that boost productivity.

In a code editor like Visual Studio Code, extensions can add support for new
programming languages, provide debugging tools, or improve the user
interface. For example, you might add a dark mode theme (vanity extension)
or a Python language support tool (useful extension).

One example is Dracula, which changes the Ul coloring of the program.
Extensions help users adapt the software to their specific needs and
tastes, making development easier and more efficient.

These extensions are typically distributed through the Visual Studio Code
Marketplace, where users can search, browse, and install a wide variety of
extensions. Within the VSCode interface, you can access the Marketplace
and search for specific extensions, read reviews, and install them with just a
click, seamlessly integrating new features into your editor.

These extensions are not included by default to prevent issues such as
Python users having extensions that are only relevant for JavaScript.
This approach helps VS Code run faster and smoother, while still

giving users the flexibility to customize their experience. \/\/\




PACKAGES

A package in software development is a bundled collection of
code, assets, and metadata that provides specific
functionality

or addresses particular issues faced by developers, that can be easily
distributed and installed.

Packages can be libraries or modules that developers include in their
projects to extend functionality, such as adding new features, utilities, or
tools. Think of packages as similar to extensions: they enhance your
programming experience by adding functionality and solving problems
without altering the core features of an environment.

By leveraging these packages, developers can improve their workflow, save
time, and benefit from the expertise of the broader programming
community.

When exploring packages, check the weekly download statistics for each
package to assess its popularity and reliability. Remember, these are third-

party packages, so a large and active community often signifies that a
package is well-regarded and widely used.

NPM

npm, which stands for Node Package
Manager, is a package manager designed
specifically for the JavaScript programming
language and the Node.js runtime
environment.

It enables you to download JavaScript packages that assist with various
programming tasks. These npm packages are collections of code, assets, and
metadata that provide specific functionalities or address particular
development needs, much like extensions. npm helps extend the capabilities
of Node.js while keeping the core environment simple and efficient.




npm automates the processes of installing, updating, configuring,
and removing software packages, streamlining these tasks on your
system.

Developers can explore, install, and leverage a wide range of npm
packages to enhance their JavaScript projects, improve their
workflow, and tap into the expertise of the broader JavaScript
community. When assessing npm packages, checking weekly
download statistics and community feedback can help determine
their popularity and reliability. npm thus extends the capabilities of
Node.js while maintaining a simple and efficient core environment.

PYPI

Python provides a dynamic array of packages
and modules through PyPI,
the Python Package Index.

M

ython

Package

PyPl serves as a package manager tailored for Index
the Python programming language, allowing you
to download packages that support various
programming tasks.

W Like npm packages, PyPI packages consist of code, assets, and
metadata designed to deliver specific functionalities or resolve

W particular development challenges, similar to extensions.

W PyPI simplifies the management of software packages by

automating their installation, updating, configuration,
removal. Developers can explore and install a diverse range of PyPl packages
to enhance their Python projects, streamline their workflow, and benefit from
the broader Python community's knowledge. Again, be careful to evaluate
packages by considering their download statistics and community feedback.




ONLINE IDE’S

Online IDEs are cloud-based platforms that offer a
comprehensive development environment directly accessible
from a web browser.

These platforms simplify the coding and development process by
eliminating the need to install and configure runtime environments on your
local machine.

With online IDEs, you can create a user account and start coding
immediately without having to install any software or set up complex
runtime environments. They provide a fully-featured code editor with
support for syntax highlighting, autocompletion, and code formatting
across various programming languages. Commonly supported languages
include Python, JavaScript, Java, C++, Ruby, and more.

A significant advantage of online IDEs is their integrated console, which
allows you to execute code and view output directly within the browser.
This feature streamlines development by providing immediate feedback
without the need for local installations or configurations.

Additionally, many online IDEs offer collaborative features that enable \/‘\-—
multiple users to write, run, and share code simultaneously.

This makes them ideal for both individual projects and \A
team-based development.

Overall, online IDEs provide a convenient, web-based solution for coding,
execution, and collaboration, removing the need for local setup and
simplifying the development process.




