PRACTICAL PACKET
ANALYSIS

Usaing Wireashark to Solve
Real-World Network
Problema

by Chris Sanders

=

NO STARCH
PRESS

San Francisco

Q area
ising the
r those
traffic
re easily
'S,

be used
re than
hese

e next

NOTE

COMMON PROTOCOLS

This chapter is an overview of some of the
more common protocols that appear in
Wireshark. We will look at sample trace files

containing working examples of several different
protocols and then discuss how each one functions.
My goal here is to help you understand each of these

protocols and give you a baseline for comparison when analyzing protocols
that you suspect aren’t working correctly. This chapter contains some very
important basic protocol information. Skipping it would be like watching

part two of a movie without seeing part one—the following chapters just won’t
make sense.

Twon't go into great detail about the design of each individual protocol; instead, I have
provided the associated RFC number for each. An RFC, or request for comments, is
the official document that defines the implementation standards for protocols in the
TCP/IP stack. You can search for RFC documentation at the RFC Editor home page,
hitp:/ fwww.rfe-editor org.

Address Resolution Protocol

arp.peap

214 :0.004081

We'll start with Address Resolution Protocol (ARP) because it is one of the
simpler protocols, requiring only a few packets to complete its entire opera-
tion. ARP (RFC 826)is used to map Layer 3 (IP) addresses into Layer 2
(MAC) addresses, thus allowing devices (such as switches and routers) to
transmit data to devices on each of their ports.

The funny thing about ARP is that it actually provides service to two
different layers of the OSImodel: the network layer and the data link layer.

When a computer wants to transmit data to another computer, it must
first know where that computer is. This is done with the aid of the switch or
router connecting the two computers and the ARP protocol.

Now take a look at our capture file, as shown in Figure 6-1. Note that in
the first packet, our source computer (01:16:ce:6e:8b: 24) is sending a packet
to fELEFOFEFCE asking, Who has 192.168.0.12.°

i 8 I SR
e T 00 10.46:022:ba

00:13:46:0b:22:ba 00:16:ce:6e:8b:24 ARP

Figure 6-1: The whole ARP process only involves two packets—a request and a reply.

62

Asyou learned earlier, a switch only operates on Layer 2; it has no
knowledge of a computer’s Layer 3 address. What does the computer do,
then? Well, what do you do when you don’t know the first name of the Smith
you want to call? You call every Sinith in the phone book until you reach the
right one!

ARP provides the functionality to find the client’s Layer 2 address thatis
associated with its Layer 3 address by allowing the transmitting computer to
send an ARP broadcast. This broadcast is a packet sent to the Layer 2 MAC
address ff:ff:f1:ff-Ff:ff, the standard broadcast address; the packet is then sent
to every computer in its broadcast domain.

This packet’s only function is to ask every computer it contacts whether
or not it has an IP address of 192.168.0.1. Computers with a different IP
address will simply drop the packet, while the one that has it will identify
itself by sending a response containing its Layer 2 address back to the
transmitting computer.

The second packet (also shown in Figure 6-1) shows the destination
computer’s ARP response to the first packet. The response is a very straight-
forward one: 192.168.0.1 is at 00:13:46:0b:22:ba. From this point forward, the
transmitting computer will know the Layer 2 address of the destination
computer and will be able to send data directly to it.

Dynamic Host Configuration Protocol

dhep.peap

Chapter 6

Dynamic Host Configuration Protocol (DHCP) is another fairly simple
protocol. DHCP (RFC 2131) automatically provides clients with network-
related configuration information, such as a domain name, NTP server
address, or a unique Layer 3 (IP) address. The DHCP communication

of the
opera-

T 2

18) to

‘WO

< layer.
> must

itch or

that in
i packet

-do,
e Smith
ach the

s that is
uter to
VAC
en sent

hether
IP
Wity

a

lon
raight-
ird, the

101

le
rk-

er

t

process is a client/server communication type in which the client computer
requests an IP address fromn a DHCP server and the server acknowledges it by
giving it one. ')

The basic functionality of DHCP is a simple four-step process. The
process begins with packet 1 when the client computer sends a DHCP
Discover packet to the broadcast IP address 255.255.255.955 (as shown
in Figure 6-2).

Figure 6-2: DHCP begins with a DHCP Discover packet, as shown here.

When a client wants to obtain an IP address on a network, it must first
locate a valid DHCP server on that network. It does so by sending a broadcast
packet designed to locate any valid DHCP servers on the network. When a
valid DHCP server receives one of these packets, it sends a response to the
client in a DHCP Offer packet, as seen in packet 2 (Figure 6-3). This packet
contains the IP address that the DHCP server wants to assign to the client
and any other information the server is configured to supply.

Figure 6-3: The DHCP Offer packet is the server’s response to the client.

Once the client receives this packet, it requests the addressing information
from the server by sending a DHCP Request packet, which is packet 3 in our
sample file. Since the client has not yet configured itself with the given IP
address, this packet is once again sent as a broadcast; this tells the server that
the client has accepted its offer and notifies all other DHCP servers on the
network that the client is no longer accepting other offers. Once the server
receives this packet, it assigns this IP address to the client and sends a DEICP
ACK packet back to the client, as seen in packet 4 (Figure 6-4), signifying the
end of the DHCP transaction. :

Figure 6-4: The Packet Details pane shows all of the details for this DHCP ACK packet.

Notice that each DHCP transaction has a specific Transaction ID that can
be seen under the Info heading in the Packet List pane. These Transaction IDs
allow the DHCP server to identify and separate each client transaction. This
is important because it allows you to keep each transaction separate in the
analysis process,

Though we’ve covered only four, you may find up to eight different
types of DHCP packets in a capture file. (For more on these and other
DHCP functions, read the DHSP RFC.)

63

Common Protocols

£
L
-1
)
I
:

o4

TCP/IP and HTTP

htip.pcap TCP/IP is the basis for almost all of the communication we will discuss in this

Chapter 6

book. Because it is the most widely used suite of communication protocols,
we will focus on it. , .

Hypertext Transfer Protocol (HTTF, RFC 2616)is the server/client—based
protocol used to transfer web pages across a network. A simple HT'TP
transaction is a good example of TCP/IP communication. Every time you
search the Internet with Google, check the weather, or even check your
fantasy sports teams, you are transferring data via TCP/IP using HTTP.

TCP/IP

The TCP/IP protocol is really a stack of protocols, consisting of several
different protocols on both Layers 3 and 4 of the OSI model. These protocols
include TCP, IP, ARP, DHCP, ICMP, and many others.

Transmission Control Protocol (TCE, RFC 793)is a Layer 4 protocol that
is commonly used because it provides an efficient method of transparent,
reliable, and bi-directional communication between devices. Bi-directional
communication means that data can be transmitted and received simul-
taneously from a single host.

All of the various benefits and features of TCP are made possible through
different types of TCP packets and flags. In the next several paragraphs we
will look at these different types of packets and what they do.

Internet Protocol (IP, RFC 791)is the Layer 3 protocol that provides the
addressing system that allows communication on a network. IP is a connection-
less protocol, which means that it requires the functionality of TGP bundled
with it to ensure the reliability of transmitted data.

The traffic in the capture file begins with the establishment of a TCP/IP
session, followed by the request and transmission of HTTP data and the
termination of the session. Stepping through this simple communication
between client and server is going to help us in understanding how TGP
and IP work.

TCP: Establishing the Session

Before you can transfer data to or from another computer, the sender and
receiver need to complete a TCP handshake. A TCP handshakeis a three-step
process whereby the transmitting computer (the client, in this example)
establishes a connection with the destination computer (the server). You
can see the handshake in the first three packets of our capture file, and it is
detailed visually in Figure 6-5.

Now is a very good time to go ahead and establish our client and server
computers. The client computer is shown in the first packet with IP address
145.954.160.237. The server computer is shown in the first packet with
IP address 65.208.228.223.

/

e

s in this
tocols,

ased
pl

: you
ur
P,

eral
-otocols

1 that
yarent,
ctional
imul-

through
»hs we

es the
mection-
>undled

‘Cp/IP
d-the
cation
1 TCP

er and
ree-step
nple)

3. You
ind it is

i server
address
with

NOTE

NOTE

SYN Packet
= Seq#HHH]H e
Ack #0

SYN/ACK Packet
q # 222222222 feunem
Ack#]]]]””?

ACK Packet
q# 111111112t 2 /
Client Fl§ 2hav2023 Sorver

Figure 6-5: The three-step TCP handshake process

The SYN Packet

To begin the handshake process, the client sends a SYN packet to the server;
this packet is designed to establish synchronization with the server, which
ensures that the client and server keep their communications in the proper
order. The SYN packet carries with it a 32-bit sequence number, located in
the header of a TCP packet. ‘

Many TCP stacks randomize initial sequence numbers so that they are hardened
against guessing by third parties. This is an important security measure, since random
sequence numbers make it more difficult to instantiate a forged TCP connection with
such stacks.

To view a packet’s TCP information, including its sequence number,
expand the TCP section under Wireshark’s Packet Details pane. (You will
refer to this section often because it contains a variety of useful information,
including the source and destination, ports used, the sequence number, the
type of TCP packet, and other TCP-specific options.) Notice in the capture
file that the first SYN packet’s sequence number is 0, as shown in Figure 6-6.

W Frame 1 (62 bytes on wire, 62 bytes captured)
| Ethernet II,-5rc: Xerox_00:00:00 (00:00:01:00:00:00), Dst: Fe:ff:20:00:01:00 (fe:ff:20:00:01: 00)
m nternet Protocol, iSrc: 145,254,160, 237 (145,254,160, 237) Dst: (65.208.228,223 :(65.208.228. 223)
S Transmis s on;Contro) PLOLoco) 7 Sre ports-3372:(3372) 2Dt POre 2Nt Th:(80), Seqi-0, "Len: -0 -
Source port: 3372 (3372) _
Destination port: hrtp (80)
sequence number: 0 (relative sequence number)

Header length: 28 byta
@ {E1ags 1 0X02 (SVND) T
window size: 8760
checksum: 0xc30c [correct]
g options: (8 bytes)
Maximum segment size: 1460 bytes
NoP
NOP
SaCK permitted

Figure 6-6: The Packet Details pane gives all the information you need about this packet.

In Wireshark, TCP sequence numbers are treated as “relative” by default. Wireshark
adjusts the first sequence numbe{‘{'ﬁ a communication stream so that it is 0 rather than
its true value. This is done so that the sequence numbers are easier to follow.

SYN/ACK, the Server Response

The next step in the handshake process is the response from the server. Once
the server receives the initial SYN packet from the client, it reads the packet’s

sequence number and uses that number in the packet it returns. The response
packet is called a SYN/ACK packet, and it is seen in packet 2 of the example file.

Common Protocols 65

The ACK portion of the packet acknowledges the SYN packet—in other
words, it tells the client computer that the server received the SYN packet.
It does this by incrementing the sequence number sent in the original SYN
packet by one and using it as the acknowledgment number in the ACK packet.
When the client receives this acknowledgment number containing the original
SYN sequence number, it knows that the server can receive its communication,
and vice versa. The purpose of SYN portion of the SYN/ACK is the same as in
the original SYN packet: It is used to transmit 2 sequence number that the
client system can use to acknowledge receipt.

The Final ACK Packet

Finally, the client sends an ACK packet to the server. This packet tells the
server that the client received its SYN/ACK packet. As with step two of
the process, the sequence number is incremented by one and sent as an
acknowledgment number to the server. Once this last ACK packet is
received, the connection is said to be in the established state, and reliable
data transfer can begin. {

Beginning the Flow of Data

Once the handshake has been established, all packets sent in this particular
session between client and server will use sequence numbers to make sure
they stay in order. However, from now on, these packets will be incremented
by the size of the data frame being transmitted, rather than by one. (To learn
more about how TCP packets stay organized, have a look at RFG 793.)

HTTP Request and Transmission

Once the communication session has been established, it’s time for the actual
request and transmission of the web page you are trying to view. This involves
both HTTP and TCP. .

The process begins in packet 4, our first HTTP packet, which asks the
server to transmit the web page to the client. Go ahead and expand the HTTP
section of this packet in the Packet Details pane to view the protocol-specific
information related to this request (as shown in Figure 6-7).

3 (Hypertext Transfer Protocel
B |GET. /download: Ktml HITP/L INCAD
Request Method: GET
Request URI: /download.htmi
Request version: HTTP/i.1
Host: vawi. ethereal, com\r\n
User-agent: Mozilla/5.0 (windows; U; windows NT 5.1; en-us; rvil.6) Gecko/20040113\r\n
Accept: text/xml, application/xml, application/xhtmi+xml, text/himl; g=0. 9, text/plain; g=0. 8, image/png,|
Accept-Language: en-us,en; q=0,5\r\n
Accept-gncoding: gzip,deflate\r\n {
Accept-Charset: IS0-8859-1,utf-8;9=0.7,%;g=0. AN
Keep-alive: 300\r\n
connection: keep-alive\r\n
referer: http://vam. ethereal. con/development. html\r\n
\r\n

Figure 6-7: The Packet Details pane shows everything you want to know about the request.

Asyou can see, this packet invokes a GET command (Request Method: GET)
for the web page /download.html on the domain www.ethereal.com (Request
URI: /download.html and Host: www.ethereal.com). You will also notice other

66 Chapter 6

|
!

a other
icket.

al SYN
packet.
original
ication,
ne as in
it the

1Is the
of
as an

iable

‘ticular
: sure
mented
‘o learn

)

e actual
nvolves

s the
= HTTP
recific

image/png,

e request.

od: GET)
‘Request
other

information that may be useful, such as character encoding (Accept-Charset:
150-8859-1), and the referrer location (Referrer: http://www.ethereal.com/
development.html).

Once HTTP has made this initial GET request, TGP takes over the data
transfer process. Throughout the rest of the capture file you will see this pro-
cess repeated: HT'TP will request data from the server, and the server will then
use TCP to transport this data back to the client. The server lets the client
know the request was valid by sending an HTTP OK message before trans-
mitting the data. (You can see the corresponding GET and OK packets in
the example file at packets 4 and 38, shown in Figure 6-8.)

Toe T [Sewee]
“4 0.611310 . 145,254,160,237 - 65, 208. 2
S Transmis5i0n CONTroT Prototol, Src Fort:
Source port: 3372 (3372)
Destination port: http (80)

Sequence number: 0 (relative sequence mumber)
[Hext sequence number: 478 (relative sequence number)]
Acknowledgement number: ¢ {relative ack number)

Header length: 20 bytes

@ Flags: O0xi8 (PsH, ACK)
window size: 9660
checksum: 0xa958 [correct}

|3 -Transmission Control Protocol, Src Port: herp (80), 'Dst Port: 3372 (3372),
source port: http (80)
pestination pore: 3372 (3372)
Sequence number: 17941 (reTavive sequence number)
[Next sequence number: 18365 (relative sequence number)}

Acknowledgement number: 480 (relative ack number)

Header Jength: 20 byras :
| Flags: Ox18 (PSH, ACK)

window size: 6432

Checksum: 0x3d97 [correct]
B [SEQ/ACK analysis]

TCP segment data (424 bytes)

*;L[Reassembhd TCP segments (18364 byres): #6(1380), #8(1380), #10(1380), #£11(1380), #14(1380), #16(1380),

Figure 6-8: Packets 4 and 38 show a corresponding GET and OK.

Terminating the Session o

When there is no more data to be sent over an established connection, the
connection can be terminated in a2 manner very similar to that of the initial
TCP handshake. Rather than using SYN and ACK packets however, this
process uses FIN and ACK packets, as shown in Figure 6-9.

FIN/ACK
Packet

e

==l ACK Packet (=

FIN/ACK
Packet

Client < ACK Packef ke Server

Figure 6-9: The FIN/ACK handshake process gracefully terminates
a TCP connection,

Common Protocols 67

i Sotrce i

0
4117.:905747
42 30,063228
43730.393704

65.208.228

145.254.160. 237

145,254,160, 237
©65.208.228.223

When the server finishes transmitting data, it sends a FIN/ACK packet to
the client, as shown in Figure 6-10. The FIN packet is designed to gracefully
close a connection.

@ FiTansmiss 0N CONtrol Protaco), SreiPort: http ((80), D5t Port: 3372:(3372), 5eq: 18365, ACk: 480, Len: 0

source port: http (80)
pestination port: 3372 (3372)
sequence number: 18365 (relative sequence number)
Acknowledgement number: 480 (relative ack number)
Header Tength: 20 bytes

8 {FTag5 TORLL (F XN, ACRY T
vindow size: 6432
checksum: 0x3c64 [correct}

@ [5eq/AcK analysis]

Figure 6-10: You can see the defails of a FIN/ACK packet in the Packet Details pane.

The client responds to the FIN packet with an ACK packet that uses
the sequence numbers and incrementation rules that it finds in the FIN
packet. This closes communication from the server’s end of things. While
the server can still receive data from the client at this point, it will no
longer transmit data.

To complete the process, the client must initiate this same process again
with the server. The FIN/ACK process must be initiated and acknowledged
by both the client and server.

For example, in packet 40, the server sends a FIN/ACK packet to the
client, and the client responds with'its ACK packet in packet 41. Following
that, the client sends its own FIN/ACK packet to the server, and the server
closes the connection with an ACK packet, packet 43, as shown in Figure 6-11.

‘| Destination i S
145.254.160.237 TCP
65.208.228.223 TCP

TProlocdl |lﬂf0 e T G e i
htip > 3372 LFIN, ACK] 5eg=18365 ACk=480 Win=6432 Len=0
3372 > htrp [ACK] Seg=480 Ack=18366 Win=9236 Len=0
3372 » http [FIN, ACK] Seq=480 Ack=18366 Win=9236 Len=0
http > 3372 [ACK] Seq=18366 Ack=481 win=6432 Len=0

L7231

65.208,228.223 TCP
145,254,160.237 TCP

Figure 6-11: The FIN/ACK process as seen from the Packet List pane

Domain Name System

dns.pcap

Chapter 6

The Domain Name System (DNS, RFC 1034) translates one form of address
into another—specifically, it translates DNS addresses, such as www.google.com
or MARKETING-PC1, into their corresponding IP addresses. Some form of
address translation is a requirement, since Layer 3 of the OSI model can
only locate a computer if it has its TP address.

DNS translation is a very simple process, and it gets the job done in most
cases using only two packets, The first packet is a request to your network’s
local DNS server that asks, What is the IP address of www.google.com? The second
packet is the response from that DNS server, saying that www.google.com
resides on a server with an IP address of XX XX XX XXX ‘

Let’s take a look at DNS in action (see Figure 6-12). Notice in the first
packet of the file that a DNS packet from source 192.168.0.114 is requesting
the IP address of the hostname www.chrissanders.org from destination
905.152.37.23. The destination IP address receives the query and responds
with packet 2, which contains the IP address of the requested website,
908.113.140.24. Once the IP has been resolved by DNS, the application

!
i
|
|

acket to
acefully

T80, Ten: 0]

Jane.

. uses
= FIN

. While
10

:s8 again
ledged

o the
owing
server
are 6-11.

6432 Len=0
Len=0
9236 Len=0
Len=0

dress
ygle.com
form of
11 can

' 1n most
work’s

> second
L.com

1e first
Juesting
tion
iponds
ite,
ition

making the DNS request knows where subsequent communications need
to be directed (in thls case, a T'CP connection is established with the
webserver).

- Deshnahon

205.152.37; 23
192.168.0.114

Figure 6-12: DNS only requires two packets—a request and a response.

NOTE As you examine the actual sample capture file, you will see several different DNS
queries taking place. Often a single web page will invoke a number of queries because
the information needs to be retrieved from several servers. Try creating a display filter
to show only the DNS traffic and see if you can determine how many different DNS
queries take place in this file.

File Transfer Protocol

fip.pcap The File Transfer Protocol (FTE RFC 959)is a Layer 7 protocol that is used to
transfer data between a server and client. Operating on ports 20 and 21, FTP
is one of the most commonly used file transfer utilities. Because FTP is a
client/server protocol, all communication in the capture file involves back-
and-forth traffic between a client computer and a server computer. As with
all TCP processes, FTP begins with a standard TCP handshake, as shown with
packet 1 and in Figure 6-13 below.

Figure 6-13: The TCP handshake is prevalent in various communication fypes.

Once the handshake process completes, the server sends a welcome
message to the client, This message identifies the server as an FTP server and
tells the client that the server is ready to accept its login credentials, as shown
in Figure 6-14.

2:File Transfer Protocol (FTF)

3 220 chris sanders FTP server\r\n
Response code: service ready for new user (220)
Response arg: chris Sanders FTP Server

Figure 6-14: The beginning of the FTP communication process

Through the next several packets, the client sends a username (csanders)
and a password (echo) to the server, and the server acknowledges them
(Figure 6-15).

Source : Desknation Info - - Gy
192.168.0. 114 197.168.0.163 Request USER csanders
192.168.0.183 192.168.0.114 FTP Response: 331 Password required for csanders,
192,.168.0.114 192.168.0.193 FTP Request: PASS echo
©192,168.0.193 192 168 0. 1}%777 FTP - 'Response: 230 User csanders logged in. .

Figure 6-15: The username and password of ithe FIP user being transmitted to the server

Common Protocols 69

This communication is summed up nicely in the Info column of the
Packet List pane, though that window only gives a very brief summary of the
packet contents. If you want to dig a little deeper, you can expand the FIP
section in the Packet Details pane.

Notice that encryption, such as provided by pro tocols like SSH or HTTPS,
is not used in our example, so the FTP password can be seen clearly in the
capture file in packet 7 (Figure 6-16).

T Frame 7. (69 bytes on wire, 63 bytes captured) : g S
m Etherner 11,7 5rc: HofiHaiPr_6ei8b:24 (00:16:ce:6e:8b:24), "DsT: AsustekC 40:76;6f (00:15:F2:40:76:ef) !
@miInternet ‘Protocol, src:192.168.0.114 (192.168.0.114), Dst: 192,168.0.193 (192.7168.0.193) =
@ Transmission control. Protocol,“src Port:i1137 (1137), “pat Port: Fip (21),seq: 16, ‘Ack: 68, Len: 11
@ Eile Transfer. Protocol :(ETP) : ‘ : : :
B PASS echo\r\n
Request command: PASS

Request arg: echo

Figure 6-16: The password of the user csanders can be seen clearly in this packet.

A connecting client uses a list of 5 File Transfer protocol «(FTP)
commands to interact with an FTP server. B PWDAr\n
Request command: PWD

These range from viewing the contents of a
directory, traversing a directory, download- Figure 6-17: Packet 15 shows the
ing or deleting a file, and so on. (Fora PWD command being issued to the
complete list of the available commands server.

visible in an FTP packet, see RFG 959.)

Let’s look at a few FTP commands used in

our example file, beginning with packet 15,

shown in Figure 6-17.

CWD Command

As you can see, packet 15 shows a CWD command being sent from the client
to the server. CWD stands for change working directory, and this command is
invoked every time you tell an FTP client to move to a different directory on
the server.

Notice in this example that the CWD command includes requests to
change the working directory to /, which is the root directory of the FTP
server. When you first log into an FTP server, the CWD command is issued
to change to the root directory, /. Once the server receives this GWD
command, it changes to the root directory and tells the client that /is
now the current working directory.

SIZE Command 5 ‘File Transfer Protocol ((FTP)
N 3 SIZE Music.mp3\r\n
The next command is the SIZE Request command: SIZE
R, Request arg: Music.mp3
command, shown in Figure 6-13.
This command reports the size Figure 6-18: The SIZE command

(in bytes) of a particular file, and being sent fo the server
it is always sent with a filename.

70 Chopter 6

ae E) Notice in PaCket 25 that the 5 File Transfer protocol (FTP)
of the . client sends the SIZE command 8 213 4980924\r\n
; X) s Response code: File status (213)
ETP . to the server to request the size Response arg: 4980924
0 of the file Music.mp3. Packet 26
TTPS ,: (Figure 6-19) shows the server’s Figure 6-19: The packet returned from the
2 H S
.the | response, which is the file size of issued SIZE command
. 4,980,924 bytes.
76:ef) RETR Command = File Transfer Protocol (FTP)
i | = RETR Music.mp3\r\n
en: Al . The RETR (retrieve) command, iigﬂiﬁ ;ﬁg’?ass;if;gg
' shown in Figure 6-20, is used by
- the client to request the down- Figure 6-20: The RETR command is used
—_— load of a file from the server. to download a file from the FTP server.

In packet 82, the client sends
the RETR command to the server, requesting download of the file Music.mp3.

FTP) . Once the server gets this request, it begins sending the data to the client.
!
, !
B ’ NOTE The packets labeled FTP-DATA are ones containing a file that is being downloaded
's the . Jfrom or wploaded to the server.
to the .
| Telnet Protocol
. telnet.pcap The telnet protocol (RFC 854) is an unsecured, text-based way for a server and
. client to communicate. It is often used to remotely administer servers, switches,
routers, and other network hardware devices.
3 , In this capture file you will see an example of a client computer
(192.168.0.2) connecting to a telnet sexrver (192.168.0.1). As you begin to
lient step through the data being transmitted, notice that everything is sent in
¢ 1er‘1 clear text. For this reason, the telnet protocol should not be used to
and is . "
transmit sensitive data.
ory on
NOTE You can be more secure by forgoing telnet and using SSH instead.
ts to
FTP . What type of communi-
issued cation is occurring in this
- = Telnet
) e)s.:change b(?tween server and command: will Suppress Go Ahead
is ' client? Starting at the top, we command: Do Terminal Type
can immediately draw several command: DO Nego’giate About window size ,
. command: Do Terminal speed
conclusions. The first several command: Do Remote Flow control
Command: Do Linemode
packe'ts conﬁfm that we are @ Suboption Begin: tinemode
definitely seeing telnet traffic, command: suboption End

because telnet-specific settings
are being communicated
between these two devices, |
as shown in Figure 6-21. i
Each telnet session uses several unique options to specify communication
rates and data transfer modes, which must be synchronized between client

Figure 6-21: The first packets of the capture file
are felnet packets belween server and client.

Common Protocols 7§

lag;_Frame 36 (75 bytes on wire, 75 bytes captured)

and server before communication can begin. These options account for the
first 30 or so packets in the sample capture file.

The first interesting packet is number 27, which identifies the server as
an OpenBSD server. Packet 29 presents a login prompt to the client, and in
packet 31 you can see that the username fakeis sent back to the server. Packet
36 requests a password from the client, which is answered in packet 38 with
the password user, which is shown in Figure 6-22. You can now see just how
insecure telnet is. This username and password combination could very well
be the administrative password to one of the most important servers on your
network, and it would still be shown in clear text that is readable by anyone
with a packet sniffer and little bit of knowledge.

i jETHernet (i1, 'src; ‘westernb_97:a0:97 (00:00%c0:9f:a0:97), Dst: Lite-onc_3bibf:fa (00:a0:cc:3b:bf:fa)

@ Internet Protocol, "src: 192.168.0.1 (192.168.0.1), bst: 192.168.0.2 (192.168.0.2)

@ Transmission control .Protocol, Src Port: telnet (23), Dst Port: 1550 (i550), seq: 143, Ack: 207, Len: 9

5 Telnet i : : ;
Data: Password:

| Frame 38 (72 ‘hytes.on wire, 72 bytes captured)

@ Ethernet IX, src: Lite-Onc_3b:bf:fa (00:a0:cc:3b:bf:fa), Dst: Westernp 9f:a0:97 (00:00:c0:9f:a0:97)

@ Internet :Protocol, src: 107.168.0.2 (192.168.0.2), bst: 192.168.0.1 (192.168.0.1)

@ ITransmission Control Protocol, src port?{ 1550 (1550), Dst Port: teinet (23), ‘seq: 207, ack: 152, Len: 6

aiTelnet :
pata: user\r\n

Figure 6-22: A password fransmitied via telnet can be seen as clear as day.

The rest of the capture file shows the client using the established telnet
session to ping several websites. You can observe this data and exactly how it
is transferred by looking at the telnet section in the Packet Details pane.

MSN Messenger Service

msnms.pcap You may find that you need to analyze the traffic of an instant message con-
versation for several reasons. We explored one possible scenario in Chapter 5
when we suspected an employee of giving away company financial informa-
tion over messenger software. There are several popular instant messaging
applications, and while each one utilizes its own protocol, there are certain
similarities in each. Here we’ll focus specifically on traffic from the MSN
Messenger Service (MSNMS). Let’s see if we can’t catch some employees
in the act.

NOTE Some organizations have policies that prevent the use of messaging software, and if so,
even seeing the MSNMS protocol in a capture file can set off alarms.

The capture file begins like any TCP communication—with a simple
handshake between two clients, as shown in Figure 6-23.

Ceien Bl
= e

5

apisEginy e E K] SETORCREU O
T207.46.26.167 Tcp 33 363 [ACK] Seq=1 Ack=1 Win=17424 Le|

Figure 6-23: The TCP handshake begins the communication process.

72 Chapter 6

for the

Iver as
and in
. Packet
38 with
st how
ery well
on your
nyone

:Ta)

. Len: 8

197)

, Len: 6

| telnet
y how it
e,

ze con-
1apter b
forma-
saging
sertain
1SN
oyees

md if so,

aple

Following this handshake, the first MSNMS packet is sent from
192.168.0.114 to a server residing outside of your local network (Figure 6-24).

40.098991 192.168.0.11 207 [46,26.167 MSW4S_ USR 93 tesla brianthotmail, con 1835953120, 20013021,2623242

Figure 6-24: This packet shows a client inside our network communicating with a server from the outside world.

This packet is being sent from a computer on your network to a
remote Microsoft server in order to establish a handshake that prepares
for communication. These initial packets are marked as USR packets, as
seen under the MSNMS section of the packet in the Packet Details pane.
You can seen the email address of the person initiating the conversation
(tesla_brian@hotmail.com) in these initial packets (Figure 6-25).

= MSN Messénger -service
USR 93 0K tesla_brian@hotmail. com Brian\r\n

Figure 6-25: The user tesla_brian@hotmail.com
appears to be initiating a conversation, as seen
in the packet defails of packet 5.

The next two packets are marked CAL packets, as shown in Figure 6-26.
CAL packets are sent from the computer inside your network to an MSN
server in order to establish communication with another MSNMS user.

6 0.199942 192.168.0.114 207.46.26.167 MSNMS CAL 794 tesTa_thomas@hotmail.com
.7 0-300257 207.46.26.167 . 192.168.0.114 = - MSNMS CAL 94 RINGING 1835953129

Figure 6-26: CAL packets are used here fo establish communication between MSNMS users.

Asyou can see in packet 7, the corresponding MSNMS user has the
email address tesla_thomas@hotmail.com (Figure 6-27).

[Frame 6 (87 bytes ‘on wire, 87 bytes captured)
@ /Ethernet ‘II, 5rc: HonHaiPr.6e:8b:24 (00:16:ce:6e:8b: 24), bst: p-Link 21:99:4¢ (00:05: Sd 21:99: 4c)
M INternet Protocol, "src:i192,168.0.%14 (192.168.0.114) /D5t 5207 :46.26.167 (207:46.26.167) : :
M Transmission Contr(ﬂ Protocol,”Src Port: 3331 :(3331), 05t Port' ‘1863 (1863). Seq 61 Ack 42, Len: 33
1 M5N ‘Messenger.service ;

CAL 94 tesla_thomas@hotmail. com\r\n

Figure 6-27: This CAL packet lets us see the email address of the user initiating communication.

‘The server now acknowledges that it has received CAL packet 7 in
packet 8 (Figure 6-28).

70300057 207.46.26.167 “197.168.0.114 M5NM5 CAL 94 RINGING 1835953129
314 168.0.114 _ _ 207.46.26.167 TCP 3331 > 1B63 [ACK] 5eq=04 Ack=69 Win=17356 ten=0

Figure 6-28: Packet 8 shows acknowledgment of packet 7.

Common Protocols 73

Packet 9 is the last packet to be sent to fully establish communication.
As shown in Figure 6-29, packet 9 is a JOI packet sent from the remote MSN
servers, indicating that the other member of the party (tesla_thomas@
hotmail.com, in this case) has successfully joined a session and can establish
communication. ‘

tirce o Destination - - Frotocol Info o G : L
:.207.46.26,167 192.168.0.114 MSNMS JOI tesia _thomas@hotmail.com Thomas 1616756780

9 0510484

Figure 6-29: Packet 9 is a JOI packet indicating that the users are now sharing a session.

The balance of the capture file contains only MSG packets, which are
simply messages sent from one endpoint to another—in this case between
Brian and Thomas.

The first thing that probably comes to mind when you think of this
concept is, Can I really see what they are saying?! Well, as scary as it s, the
answer is yes. Everything. By simply right-clicking one of the MSG packets
and selecting Follow TCP Stream (as you learned to do in Chapter 5) you
can see the full conversation between Brian and Thomas (Figure 6-30).
This might make you be a little more careful about what you say in instant
messenger conversations while on the job!

AIME-Version:
ontent-Type: textémesmsgscontrﬂ
pinguser: tesla_brian@hotmail.com

iMe-version: 1.0
ontent-Type: text/x-msmsgscontrol
pinguser: tesla_brianthotmail.com

MSG 99 N 178

ME-version: 1.0

ontent-Type: text/plain; charset=utr-8

—MMS-IM-Format; FN=MS%205hel1%20D1g; EF=; €0=0; C5=0; PF=0

ired?Ms56 tesla_thomas@hotmail, com

IME-Version: 1.0
ontent-Type: text/x-msms?scont‘rm
pinguser: tesla_thomas@hotmail.conm

sG tesla_thomas@hotmail.com Thomas 156

MIME-Version: 1.0

ontent-Type: text/plain; charset=uUrr-8

-MMS-IM-Format: FN=M5%20Shell%20D1g; EF=; C0=0; CS=0; PF=0

1, 1 hear he is a real jerkmMsc 100 U 96

& U
ontent-Type: text/x-msmsgscontrol
ninntser: resla bhrianghormail com

i ¥ |® ascn € emcoic £

Hex Dump (A

 Entre conveizabon (923bytes) ays (iRaw.

Figure 6-30: We'll see who's a jerkl You're fired!

,(‘ : 74 Chopter 6

|

756780

are
een

1is

e
ckets
) you
).
1stant

el

Internet Control Message Protocol

icmp.peap Tnternet Control Message Protocol (ICMP) is a part of the IP protocol; I like to call
it a utility protocol because it’s used for troubleshooting other protocols. If you
have ever used the ping utility, you have used the ICMP protocol.
Let’s see what common ICMP traffic looks like. The included capture file
only contains eight packets. There are two separate pings to two separate
hosts. Let’s look at the packet details of packet 1, shown in Figure 6-31.

If you expand the ICMP section,
you will see what little there is to an

ICMP packet. The first packet is B'Internet Control Message Protocol
. e: 8 (Echo (ping) request)
labeled as type 8, an echo (ping) ?gﬁe: 0 ping) req
request. Every ICMP packet hasa Checksum: 0x495¢ [correct]
. . P Identifier: 0x0300
numerical type associated with it, Sequence mumber: 0X0100
which determines how the packet is Data (32 bytes)

to be handled by the destination
machine. (RFC 792 lists all the
different types of ICMP packets.)

Common sense tells us that if a computer sends an echo request, it
should receive an echo reply, and that’s just what we see in the capture file.
Packet 2 is transmitted back from the remote computer and is marked as
ICMP type 0, an echo (ping) reply.

A standard ping from a Windows command line pings a host four
times. You can see the ping process in the capture file and in Figure 6-32,
as well. The first ping destination, 192.168.0.1, receives and replies to four
pings. Following this, another ping is initiated to 72.14.207.99 (http://
www.google.com), which also receives and replies to four pings.

Figure 6-31: The first ping packet, packet 1

Figure 6-32: Ping, reply, ping, reply, ping, reply—you get the picture, right?

Final Thoughts

The goal of this chapter has been to introduce you to using Wireshark to
analyze capture files and to use those capture files to show you how some
common protocols work. Although we’ve only briefly covered some of the
more advanced protocols, I highly recommend reading their RFCs and
studying them more in depth. As the book continues on to various sce-
narios, we will be building on the basic concepts you've learned here.

Common Protocols 75

