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Image Classification 

•  Image classification can be a difficult task 
•  Some of the challenges we have to face are: 

–  Viewpoint variation: an object can be oriented in many ways 
–  Scale varition: objects can vary in size  
–  Deformation: some objects can be deformed 
–  Occlusion: only a part of the object is visible 
–  Illumination conditions: lighting conditions can vary on an object 
–  Background clutter: object may blend into a cluttered background 
–  Intra-class variation: categories can be very broad, such as chair 



Image Classification 



Image Classification 

•  The dataset can also be very large with lots of categories: 



Image Classification 

•  Each image also requires a lot of input values: 
–  Suppose we have an image of 248x400 pixels 
–  If the image is in color, we have one value Red, one for 

Green, and one for Blue (RGB, 3 color channels) 
–  The image is made up of 248x400x3 values = 297600 

values! 



Deep Learning 



Deep Learning 

•  Deep Learning means any deep neural network with 
more than one hidden layer 

•  When we talk about deep learning, we often mean 
specialized deep networks  

•  The most well known specialized DNN is the 
Convolutional Neural Network 

•  This is what we shall focus on in this lecture 



ConvNets (CNNs) 

•  ConvNets are very similar to traditional neural 
networks: 
–  They are made up of units that have learnable weights and 

biases 
–  Each unit performs a dot-product of the weights and inputs, 

and possible ends with a non-linearity (such as the ReLU 
function) 

–  The output layer maps inputs to a category 
–  They have a loss function (such as Softmax) 

•  So, what are the actual differences? 



ConvNets 

•  ConvNets are only used if the input is images! 
•  This allows us to specialize the architecture for 

images 
•  This makes the score function more efficient and 

reduces the number of weights in the network 
 



Regular NNs 

•  In regular NNs, the input is a vector which is 
transformed through one ore more hidden layers 

•  Each layer is made up of units, and each unit is fully 
connected to all units in the previous layer 

•  Each unit in a layer is independent of the other units 
in the layer 

•  The last output layer maps inputs to categories 



Regular NNs 

•  Regular NNs don’t scale well to images 
•  In the CIFAR-10 dataset, each image is 32x32 pixels in 3 color 

channels 
•  A fully connected unit would then have 3072 weights 
•  Since the image recognition task is rather complex, we would 

need a lot of units! 
•  If we have larger images, 200x200 pixels, each unit would 

need 120000 weights! 
•  Learning all these weights would take a very long time! 



ConvNets 

•  Images are 3-dimensional: width, height and depth 
(color channels) 

•  Each layer in a ConvNet therefore arranges the units 
in 3 dimensions 

•  Each unit is also only connected to a small region in 
the previous layer (not fully connected) 

•  Each layer transforms the 3D input volume to a new 
3D output volume 



ConvNets 

Regular 3-layer network 

3-layer ConvNet 



ConvNets 

•  A ConvNet is a sequence of layers, where each 
layer transforms one 3D volume to another 3D 
volume through some function 

•  There are three main types of layers to use: 
–  Convolutional Layer 
–  Pooling Layer 
–  Fully-Connected Layer (identical to regular NNs) 

•  A sequence of these layers forms a ConvNet 
architecture 



Convolutional Layer 

•  The Conv layer is the core block of ConvNets 
•  The Conv layer consist of a set of learnable filters 
•  Each filter is small along width and height but extends through 

the full depth of the volume 
•  A typical filter in the first ConvNet layer can for example have 

filters of 5x5x3 pixels 
•  During the forward pass, each filters slides across the width 

and height of the input volume 
•  Dot products are computed between each filter and the input 

volume at any position 



Convolutional Layer 

•  As the filter slides over the width and height of the input 
volume, a 2-dimensional activation map is produced 

•  It gives the response for the current filter at every spatial 
position in the input volume 

•  The network will learn filters that activate when they see some 
interesting visual feature such as an edge, specific color, or 
more high-level features in later Conv layers 

•  The Conv layer will have a set of filters (for example 12), and 
each filter produces a separate 2D activation map 

•  The activation maps are stacked along the depth dimension 
and produces the output volume 



Convolutional Layer 

•  Each unit is only connected to a local region of the input 
volume 

•  This is referred to as the receptive field of the unit 
•  Example: 

–  We have CIFAR-10 images as input: 32x32x3 pixels 
–  The receptive field is 5x5 
–  Each unit will then have 5x5x3 weights = 75 weights (and 1 bias) 
–  This is much less than 3072 weights needed for a fully connected 

unit 



Convolutional Layer 
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Each 5x5x3 filter slides over every 
pixel in the input volume 

5 filters is used (output volume has depth 5) 

Each filter produces 32x32 values 



Convolutional Layer 
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Second filter slides over 
the input volume 



Convolutional Layer 
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Third filter slides over 
the input volume 



Hyperparameters 

•  The Conv layer has three hyperparameters: depth, stride and 
zero-padding 

•  Depth:  
–  The depth of the output volume corresponds to the number of 

filters we have 
•  Stride: 

–  Stride means how we slide each filter over the input volume  
–  In stride 1, the filter is moved one pixel at a time (covering all 

pixels in the input volume) 
–  In stride 2, we jump 2 pixels (covering half of the pixels in the input 

volume) 



Hyperparameters 

•  Zero-padding:  
–  Along the borders of the input volume, some pixels in the volume 

will be outside the input volume 
–  When zero-padding is used, we pad the input volume with zeros 

around the border to avoid the out-of-bounds issue 
–  The parameter determines the size of the zero-padding 
–  The size shall be half the filter size for the filters to cover all pixels 

in the input volume 
0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 45 76 77 83 

0 0 53 83 87 92 

0 0 55 86 90 95 

0 0 56 85 89 95 

A 5x5 filter slides 
over a volume with 
zero-padding 2 



Output volume 

•  The size of the output volume is determined by: 
–  The input volume size, W 
–  The receptive field size, F 
–  The stride, S 
–  The zero-padding, P 

•  The size (number of units) of the output volume will then be: 



Output volume 

•  Example: 
–  Input volume is 32x32 
–  Filters are 5x5 
–  Stride is 1 and padding 0 
–  Output volume is then 28x28 pixels (and depth depends on 

the number of filters we use) 



Convolution 

•  Each depth slice uses the same weights (the 
weights of the filter) regardless of position in the 
input volume 

•  The forward pass can then be computed as a 
convolution of the unit’s weights with the input 
volume 

•  That’s why the layer is called a Conv layer 



Depth 
(3 colors) 

1*1+2*1 
= 3 

1*-1+2*1+2*1 
= 3 

2*1+2*-1+1*-1 
= -1 

= 1 

Σ= 6 

Stride = 2 
Padding = 1 

Element-wise multiplication between 
the input volume and filters (convolution) 



Filter examples 

•  Examples of filters learned by Krizhevsky et al. in the ImageNet 
challenge 

•  Each filter is 11x11 pixels and 3 color channels 
•  A total of 96 filters is used 



Pooling Layer 

•  Pooling layers are inserted between Conv layers 
•  The purpose is to reduce the size of the volumes, which 

reduces the number of weights needed and also controls 
overfitting 

•  The pooling layer acts independently on every depth slice of 
the input volume 

•  The width and height of each slice is reduced using the max 
operation 



Pooling Layer 

•  The most common type of pooling layer is to use 2x2 
filters with a stride of 2 

•  This cuts the width and height in half, and reduces 
activations with 75% 

•  The max operation takes the max value of 2x2 = 4 
pixels 



Pooling Layer 
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Pooling Layer 



Fully-connected Layer 

•  A fully-connected layer works as the hidden layers in 
a regular NN 

•  The activation is a matrix multiplication followed by a 
bias offset 



ReLU Layer 

•  We usually also write ReLU non-linearity as a layer 
•  It takes each value in the input volume, and 

calculates ReLU activation of that value: 

•  No matrix operations are done in the ReLU layer 



ConvNet Architectures 



ConvNet Architectures 

•  A ConvNet is made up of: 
–  Conv layers (CONV) 
–  Pooling layers (POOL) 
–  Fully-connected layers (FC) 
–  ReLU non-linearity (RELU) 

•  The most common ConvNet architecture is: 
–  Stacking a few CONV-RELU layers 
–  Follow them with POOL layers 
–  When the volume is of small enough size, transition to FC layers 
–  The last layer is an output layer outputting a score for each 

category 



Example Architecture 



ImageNet challenge 

•  The ImageNet challenge is an annual contest for image 
classification and localization tasks 

•  The training dataset consists of 1.2 million images and 1000 
possible categories 

•  The validation set for the challenge is a random subset of 
50000 images 

•  Images can differ in size, but in average the resolution is 
482x415 pixels 

•  ImageNet is the benchmark for 
image classification systems 



Standard Architectures 

•  There are several standardized architectures that have a name 
•  Some of them are: 

–  LeNet: the first successful ConvNet developed int he 1990’s 
–  AlexNet: won the ImageNet challenge in 2012 by a wide margin 
–  ZF Net: improvement of AlexNet that won the ImageNet challenge 

2013 
–  GoogLeNet: 2014 years winner 
–  VGGNet: ended at second place in 2014 years ImageNet 

challenge 

•  Let’s take a closer look at the VGGNet architecture: 



Layer Volume size Description 

INPUT 224x224x3 224x224 pixels and 3 color channels 

CONV3-64 + ReLU 224x224x64 Conv layer with 64 3x3x3 filters 

CONV3-64 + ReLU 224x224x64 Conv layer with 64 3x3x64 filters 

POOL2 112x112x64 Standard 2x2 pooling layer with stride 2 

CONV3-128 + ReLU 112x112x128 Conv layer with 128 3x3x64 filters 

CONV3-128 + ReLU 112x112x128 Conv layer with 128 3x3x128 filters 

POOL2 56x56x128 Standard 2x2 pooling layer with stride 2 

CONV3-256 + ReLU 56x56x256 Conv layer with 256 3x3x128 filters 

CONV3-256 + ReLU 56x56x256 Conv layer with 256 3x3x256 filters 

CONV3-256 + ReLU 56x56x256 Conv layer with 256 3x3x256 filters 

POOL2 28x28x256 Standard 2x2 pooling layer with stride 2 

CONV3-512 + ReLU 28x28x512 Conv layer with 512 3x3x256 filters 

CONV3-512 + ReLU 28x28x512 Conv layer with 512 3x3x512 filters 

CONV3-512 + ReLU 28x28x512 Conv layer with 512 3x3x512 filters 

POOL2 14x14x512 Standard 2x2 pooling layer with stride 2 

CONV3-512 + ReLU 14x14x512 Conv layer with 512 3x3x512 filters 

CONV3-512 + ReLU 14x14x512 Conv layer with 512 3x3x512 filters 

CONV3-512 + ReLU 14x14x512 Conv layer with 512 3x3x512 filters 

POOL2 7x7x512 Standard 2x2 pooling layer with stride 2 

FC + ReLU 4096 Fully-connected layer with 4096 units 

FC + ReLU 4096 Fully-connected layer with 4096 units 

FC Softmax 1000 Output layer with 1000 possible categories 



VGGNet 



VGGNet 

•  In total VGGNet needs around 93 MB of memory per 
image for the forward pass, and around twice that for the 
backward pass 

•  In total the architecture has 138M parameters (weights 
and biases) 

•  We need to use GPUs to efficiently train the architecture 
•  Memory can however be an issue on many GPUs and we 

might need to use more memory-efficient architectures 



Performance 

•  ConvNets have high memory and computational 
requirements 

•  The most important hardware is a GPU that is 
supported by the ConvNet library we use 

•  TensorFlow supports many Nvidia graphics cards, 
but rarely (if any) cards from other brands 



Example: MNIST 



MNIST dataset 

•  Each image is 28x28 pixels and 1 color channel 
(gray-scale) 

•  Training set of 60000 images 
•  Test set of 10000 images 
•  10 categories 



ConvNet for MNIST 
Layer Volume size Description 

INPUT 28x28x1 28x28 pixels and 1 color channel 

CONV5-32 + ReLU 28x28x32 Conv layer with 32 5x5x1 filters 

POOL2 14x14x32 Standard 2x2 pooling layer with stride 2 

CONV5-64 + ReLU 14x14x64 Conv layer with 64 5x5x32 filters 

POOL2 7x7x64 Standard 2x2 pooling layer with stride 2 

FC 1024 Fully-connected layer with 1024 units 

FC 10 Output layer with 10 possible categories 



ConvNet in TensorFlow 

•  The script for creating and running the ConvNet on 
the MNIST dataset in TensorFlow is available here: 
–  https://www.tensorflow.org/get_started/mnist/pros 

•  Training iterates 20000 times 
•  Each iteration trains on a batch of 50 images 



Results 

•  Training and evaluation took around 57 minutes on 
my Macbook Pro laptop 

•  The accuracy on the test set was 99.22% 
•  Compare this to a linear Softmax classifier 
•  Training and evaluation now took around 2 seconds 

and accuracy was 91.6% 
•  Using ConvNets on more complex image datasets 

requires expensive server hardware 



Keras 

•  Keras is a high-level API running on top of DNN libraries, for 
example TensorFlow 
–  https://keras.io/  

•  Keras is especially useful since it contains pre-trained 
ImageNet models, for example VGG16 and VGG19 

•  Training such models is extremely time consuming, so getting 
access to a pre-trained model can be very useful 



Keras 



Google Vision API 

https://cloud.google.com/vision/ 



Google Vision API 

https://cloud.google.com/vision/ 



Google Vision API 

https://cloud.google.com/vision/ 
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