
Dr. Johan Hagelbäck

johan.hagelback@lnu.se

http://aiguy.org

Deep Learning

Image Classification

•  Image classification can be a difficult task
•  Some of the challenges we have to face are:

–  Viewpoint variation: an object can be oriented in many ways
–  Scale varition: objects can vary in size
–  Deformation: some objects can be deformed
–  Occlusion: only a part of the object is visible
–  Illumination conditions: lighting conditions can vary on an object
–  Background clutter: object may blend into a cluttered background
–  Intra-class variation: categories can be very broad, such as chair

Image Classification

Image Classification

•  The dataset can also be very large with lots of categories:

Image Classification

•  Each image also requires a lot of input values:
–  Suppose we have an image of 248x400 pixels
–  If the image is in color, we have one value Red, one for

Green, and one for Blue (RGB, 3 color channels)
–  The image is made up of 248x400x3 values = 297600

values!

Deep Learning

Deep Learning

•  Deep Learning means any deep neural network with
more than one hidden layer

•  When we talk about deep learning, we often mean
specialized deep networks

•  The most well known specialized DNN is the
Convolutional Neural Network

•  This is what we shall focus on in this lecture

ConvNets (CNNs)

•  ConvNets are very similar to traditional neural
networks:
–  They are made up of units that have learnable weights and

biases
–  Each unit performs a dot-product of the weights and inputs,

and possible ends with a non-linearity (such as the ReLU
function)

–  The output layer maps inputs to a category
–  They have a loss function (such as Softmax)

•  So, what are the actual differences?

ConvNets

•  ConvNets are only used if the input is images!
•  This allows us to specialize the architecture for

images
•  This makes the score function more efficient and

reduces the number of weights in the network

Regular NNs

•  In regular NNs, the input is a vector which is
transformed through one ore more hidden layers

•  Each layer is made up of units, and each unit is fully
connected to all units in the previous layer

•  Each unit in a layer is independent of the other units
in the layer

•  The last output layer maps inputs to categories

Regular NNs

•  Regular NNs don’t scale well to images
•  In the CIFAR-10 dataset, each image is 32x32 pixels in 3 color

channels
•  A fully connected unit would then have 3072 weights
•  Since the image recognition task is rather complex, we would

need a lot of units!
•  If we have larger images, 200x200 pixels, each unit would

need 120000 weights!
•  Learning all these weights would take a very long time!

ConvNets

•  Images are 3-dimensional: width, height and depth
(color channels)

•  Each layer in a ConvNet therefore arranges the units
in 3 dimensions

•  Each unit is also only connected to a small region in
the previous layer (not fully connected)

•  Each layer transforms the 3D input volume to a new
3D output volume

ConvNets

Regular 3-layer network

3-layer ConvNet

ConvNets

•  A ConvNet is a sequence of layers, where each
layer transforms one 3D volume to another 3D
volume through some function

•  There are three main types of layers to use:
–  Convolutional Layer
–  Pooling Layer
–  Fully-Connected Layer (identical to regular NNs)

•  A sequence of these layers forms a ConvNet
architecture

Convolutional Layer

•  The Conv layer is the core block of ConvNets
•  The Conv layer consist of a set of learnable filters
•  Each filter is small along width and height but extends through

the full depth of the volume
•  A typical filter in the first ConvNet layer can for example have

filters of 5x5x3 pixels
•  During the forward pass, each filters slides across the width

and height of the input volume
•  Dot products are computed between each filter and the input

volume at any position

Convolutional Layer

•  As the filter slides over the width and height of the input
volume, a 2-dimensional activation map is produced

•  It gives the response for the current filter at every spatial
position in the input volume

•  The network will learn filters that activate when they see some
interesting visual feature such as an edge, specific color, or
more high-level features in later Conv layers

•  The Conv layer will have a set of filters (for example 12), and
each filter produces a separate 2D activation map

•  The activation maps are stacked along the depth dimension
and produces the output volume

Convolutional Layer

•  Each unit is only connected to a local region of the input
volume

•  This is referred to as the receptive field of the unit
•  Example:

–  We have CIFAR-10 images as input: 32x32x3 pixels
–  The receptive field is 5x5
–  Each unit will then have 5x5x3 weights = 75 weights (and 1 bias)
–  This is much less than 3072 weights needed for a fully connected

unit

Convolutional Layer

32

32
3

32

32
5

Each 5x5x3 filter slides over every
pixel in the input volume

5 filters is used (output volume has depth 5)

Each filter produces 32x32 values

Convolutional Layer

32

32
3

32

32
5

Second filter slides over
the input volume

Convolutional Layer

32

32
3

32

32
5

Third filter slides over
the input volume

Hyperparameters

•  The Conv layer has three hyperparameters: depth, stride and
zero-padding

•  Depth:
–  The depth of the output volume corresponds to the number of

filters we have
•  Stride:

–  Stride means how we slide each filter over the input volume
–  In stride 1, the filter is moved one pixel at a time (covering all

pixels in the input volume)
–  In stride 2, we jump 2 pixels (covering half of the pixels in the input

volume)

Hyperparameters

•  Zero-padding:
–  Along the borders of the input volume, some pixels in the volume

will be outside the input volume
–  When zero-padding is used, we pad the input volume with zeros

around the border to avoid the out-of-bounds issue
–  The parameter determines the size of the zero-padding
–  The size shall be half the filter size for the filters to cover all pixels

in the input volume
0 0 0 0 0 0

0 0 0 0 0 0

0 0 45 76 77 83

0 0 53 83 87 92

0 0 55 86 90 95

0 0 56 85 89 95

A 5x5 filter slides
over a volume with
zero-padding 2

Output volume

•  The size of the output volume is determined by:
–  The input volume size, W
–  The receptive field size, F
–  The stride, S
–  The zero-padding, P

•  The size (number of units) of the output volume will then be:

Output volume

•  Example:
–  Input volume is 32x32
–  Filters are 5x5
–  Stride is 1 and padding 0
–  Output volume is then 28x28 pixels (and depth depends on

the number of filters we use)

Convolution

•  Each depth slice uses the same weights (the
weights of the filter) regardless of position in the
input volume

•  The forward pass can then be computed as a
convolution of the unit’s weights with the input
volume

•  That’s why the layer is called a Conv layer

Depth
(3 colors)

1*1+2*1
= 3

1*-1+2*1+2*1
= 3

2*1+2*-1+1*-1
= -1

= 1

Σ= 6

Stride = 2
Padding = 1

Element-wise multiplication between
the input volume and filters (convolution)

Filter examples

•  Examples of filters learned by Krizhevsky et al. in the ImageNet
challenge

•  Each filter is 11x11 pixels and 3 color channels
•  A total of 96 filters is used

Pooling Layer

•  Pooling layers are inserted between Conv layers
•  The purpose is to reduce the size of the volumes, which

reduces the number of weights needed and also controls
overfitting

•  The pooling layer acts independently on every depth slice of
the input volume

•  The width and height of each slice is reduced using the max
operation

Pooling Layer

•  The most common type of pooling layer is to use 2x2
filters with a stride of 2

•  This cuts the width and height in half, and reduces
activations with 75%

•  The max operation takes the max value of 2x2 = 4
pixels

Pooling Layer

32

32
5

16

16
5

pooling

Pooling Layer

Fully-connected Layer

•  A fully-connected layer works as the hidden layers in
a regular NN

•  The activation is a matrix multiplication followed by a
bias offset

ReLU Layer

•  We usually also write ReLU non-linearity as a layer
•  It takes each value in the input volume, and

calculates ReLU activation of that value:

•  No matrix operations are done in the ReLU layer

ConvNet Architectures

ConvNet Architectures

•  A ConvNet is made up of:
–  Conv layers (CONV)
–  Pooling layers (POOL)
–  Fully-connected layers (FC)
–  ReLU non-linearity (RELU)

•  The most common ConvNet architecture is:
–  Stacking a few CONV-RELU layers
–  Follow them with POOL layers
–  When the volume is of small enough size, transition to FC layers
–  The last layer is an output layer outputting a score for each

category

Example Architecture

ImageNet challenge

•  The ImageNet challenge is an annual contest for image
classification and localization tasks

•  The training dataset consists of 1.2 million images and 1000
possible categories

•  The validation set for the challenge is a random subset of
50000 images

•  Images can differ in size, but in average the resolution is
482x415 pixels

•  ImageNet is the benchmark for
image classification systems

Standard Architectures

•  There are several standardized architectures that have a name
•  Some of them are:

–  LeNet: the first successful ConvNet developed int he 1990’s
–  AlexNet: won the ImageNet challenge in 2012 by a wide margin
–  ZF Net: improvement of AlexNet that won the ImageNet challenge

2013
–  GoogLeNet: 2014 years winner
–  VGGNet: ended at second place in 2014 years ImageNet

challenge

•  Let’s take a closer look at the VGGNet architecture:

Layer Volume size Description

INPUT 224x224x3 224x224 pixels and 3 color channels

CONV3-64 + ReLU 224x224x64 Conv layer with 64 3x3x3 filters

CONV3-64 + ReLU 224x224x64 Conv layer with 64 3x3x64 filters

POOL2 112x112x64 Standard 2x2 pooling layer with stride 2

CONV3-128 + ReLU 112x112x128 Conv layer with 128 3x3x64 filters

CONV3-128 + ReLU 112x112x128 Conv layer with 128 3x3x128 filters

POOL2 56x56x128 Standard 2x2 pooling layer with stride 2

CONV3-256 + ReLU 56x56x256 Conv layer with 256 3x3x128 filters

CONV3-256 + ReLU 56x56x256 Conv layer with 256 3x3x256 filters

CONV3-256 + ReLU 56x56x256 Conv layer with 256 3x3x256 filters

POOL2 28x28x256 Standard 2x2 pooling layer with stride 2

CONV3-512 + ReLU 28x28x512 Conv layer with 512 3x3x256 filters

CONV3-512 + ReLU 28x28x512 Conv layer with 512 3x3x512 filters

CONV3-512 + ReLU 28x28x512 Conv layer with 512 3x3x512 filters

POOL2 14x14x512 Standard 2x2 pooling layer with stride 2

CONV3-512 + ReLU 14x14x512 Conv layer with 512 3x3x512 filters

CONV3-512 + ReLU 14x14x512 Conv layer with 512 3x3x512 filters

CONV3-512 + ReLU 14x14x512 Conv layer with 512 3x3x512 filters

POOL2 7x7x512 Standard 2x2 pooling layer with stride 2

FC + ReLU 4096 Fully-connected layer with 4096 units

FC + ReLU 4096 Fully-connected layer with 4096 units

FC Softmax 1000 Output layer with 1000 possible categories

VGGNet

VGGNet

•  In total VGGNet needs around 93 MB of memory per
image for the forward pass, and around twice that for the
backward pass

•  In total the architecture has 138M parameters (weights
and biases)

•  We need to use GPUs to efficiently train the architecture
•  Memory can however be an issue on many GPUs and we

might need to use more memory-efficient architectures

Performance

•  ConvNets have high memory and computational
requirements

•  The most important hardware is a GPU that is
supported by the ConvNet library we use

•  TensorFlow supports many Nvidia graphics cards,
but rarely (if any) cards from other brands

Example: MNIST

MNIST dataset

•  Each image is 28x28 pixels and 1 color channel
(gray-scale)

•  Training set of 60000 images
•  Test set of 10000 images
•  10 categories

ConvNet for MNIST
Layer Volume size Description

INPUT 28x28x1 28x28 pixels and 1 color channel

CONV5-32 + ReLU 28x28x32 Conv layer with 32 5x5x1 filters

POOL2 14x14x32 Standard 2x2 pooling layer with stride 2

CONV5-64 + ReLU 14x14x64 Conv layer with 64 5x5x32 filters

POOL2 7x7x64 Standard 2x2 pooling layer with stride 2

FC 1024 Fully-connected layer with 1024 units

FC 10 Output layer with 10 possible categories

ConvNet in TensorFlow

•  The script for creating and running the ConvNet on
the MNIST dataset in TensorFlow is available here:
–  https://www.tensorflow.org/get_started/mnist/pros

•  Training iterates 20000 times
•  Each iteration trains on a batch of 50 images

Results

•  Training and evaluation took around 57 minutes on
my Macbook Pro laptop

•  The accuracy on the test set was 99.22%
•  Compare this to a linear Softmax classifier
•  Training and evaluation now took around 2 seconds

and accuracy was 91.6%
•  Using ConvNets on more complex image datasets

requires expensive server hardware

Keras

•  Keras is a high-level API running on top of DNN libraries, for
example TensorFlow
–  https://keras.io/

•  Keras is especially useful since it contains pre-trained
ImageNet models, for example VGG16 and VGG19

•  Training such models is extremely time consuming, so getting
access to a pre-trained model can be very useful

Keras

Google Vision API

https://cloud.google.com/vision/

Google Vision API

https://cloud.google.com/vision/

Google Vision API

https://cloud.google.com/vision/

Dr. Johan Hagelbäck

johan.hagelback@lnu.se

http://aiguy.org

Deep Learning

