Deep Learning

Dr. Johan Hagelback

johan.hagelback@Inu.se

S
k2 ntip:/iaiguy.org

Linnaeus University P

Image Classification

« Image classification can be a difficult task
« Some of the challenges we have to face are:

Viewpoint variation: an object can be oriented in many ways
Scale varition: objects can vary in size

Deformation: some objects can be deformed

Occlusion: only a part of the object is visible

lllumination conditions: lighting conditions can vary on an object
Background clutter: object may blend into a cluttered background
Intra-class variation: categories can be very broad, such as chair

Linnaeus University

Image Classification

Scale variation Occlusion

Deformation

Intra-class variation

LR

Linnaeus University i

Image Classification

« The dataset can also be very large with lots of categories:

Linnaeus University

Image Classification

« Each image also requires a lot of input values:
— Suppose we have an image of 248x400 pixels

— If the image is in color, we have one value Red, one for
Green, and one for Blue (RGB, 3 color channels)

— The image is made up of 248x400x3 values = 297600
values! T TR SR

Linnaeus University

Deep Learning

Linnaeus University

Deep Learning

 Deep Learning means any deep neural network with
more than one hidden layer

 When we talk about deep learning, we often mean
specialized deep networks

 The most well known specialized DNN is the
Convolutional Neural Network

 This is what we shall focus on in this lecture

Linnaeus University i

ConvNets (CNNs)

« ConvNets are very similar to traditional neural
networks:

— They are made up of units that have learnable weights and
biases

— Each unit performs a dot-product of the weights and inputs,
and possible ends with a non-linearity (such as the ReLU
function)

— The output layer maps inputs to a category
— They have a loss function (such as Softmax)

 So, what are the actual differences?

Linnaeus University i

ConvNets

« ConvNets are only used if the input is images!
« This allows us to specialize the architecture for
Images

 This makes the score function more efficient and
reduces the number of weights in the network

Linnaeus University

Regular NNs

* Inregular NNs, the input is a vector which is
transformed through one ore more hidden layers

« Each layer is made up of units, and each unit is fully
connected to all units in the previous layer

« Each unit in a layer is independent of the other units
In the layer

* The last output layer maps inputs to categories

Linnaeus University i

Regular NNs

* Regular NNs don'’t scale well to images

* Inthe CIFAR-10 dataset, each image is 32x32 pixels in 3 color
channels

« A fully connected unit would then have 3072 weights

« Since the image recognition task is rather complex, we would
need a lot of units!

* If we have larger images, 200x200 pixels, each unit would
need 120000 weights!

« Learning all these weights would take a very long time!

Linnaeus University i

ConvNets

* Images are 3-dimensional: width, height and depth
(color channels)

« Each layer in a ConvNet therefore arranges the units
In 3 dimensions

« Each unitis also only connected to a small region in
the previous layer (not fully connected)

« Each layer transforms the 3D input volume to a new
3D output volume

Linnaeus University i

ConvNets

®

5
i
;‘;’

output layer

I
PR
o§

input layer
hidden layer 1 hidden layer 2

depth
Soaaar "o
X
- ~IO0000K) - —7

Regular 3-layer network

3-layer ConvNet

Linnaeus University

ConvNets

« A ConvNet is a sequence of layers, where each
layer transforms one 3D volume to another 3D
volume through some function

« There are three main types of layers to use:
— Convolutional Layer
— Pooling Layer
— Fully-Connected Layer (identical to regular NNs)

* A sequence of these layers forms a ConvNet
architecture

Linnaeus University

Convolutional Layer

« The Conv layer is the core block of ConvNets
« The Conv layer consist of a set of learnable filters

« Each filter is small along width and height but extends through
the full depth of the volume

« A typical filter in the first ConvNet layer can for example have
filters of 5x5x3 pixels

* During the forward pass, each filters slides across the width
and height of the input volume

* Dot products are computed between each filter and the input
volume at any position

Linnaeus University

Convolutional Layer

» As the filter slides over the width and height of the input
volume, a 2-dimensional activation map is produced

« |t gives the response for the current filter at every spatial
position in the input volume

« The network will learn filters that activate when they see some
interesting visual feature such as an edge, specific color, or
more high-level features in later Conv layers

« The Conv layer will have a set of filters (for example 12), and
each filter produces a separate 2D activation map

« The activation maps are stacked along the depth dimension
and produces the output volume

Linnaeus University

Convolutional Layer

« Each unit is only connected to a local region of the input
volume

* This is referred to as the receptive field of the unit

« Example:
— We have CIFAR-10 images as input: 32x32x3 pixels
— The receptive field is 5x5
— Each unit will then have 5x5x3 weights = 75 weights (and 1 bias)

— This is much less than 3072 weights needed for a fully connected
unit

Linnaeus University

Convolutional Layer

32

— 00000

32

5

Each 5x5x3 filter slides over every 5 filters is used (output volume has depth 5)
pixel in the input volume

Each filter produces 32x32 values

Linnaeus University i

Convolutional Layer

3

Second filter slides over
the input volume

=000

32

32

Linnaeus University

Convolutional Layer

3

Third filter slides over
the input volume

=E=0000

32

32

Linnaeus University

Hyperparameters

 The Conv layer has three hyperparameters: depth, stride and
zero-padding
* Depth:
— The depth of the output volume corresponds to the number of
filters we have

o Stride:

— Stride means how we slide each filter over the input volume

— In stride 1, the filter is moved one pixel at a time (covering all
pixels in the input volume)

— In stride 2, we jump 2 pixels (covering half of the pixels in the input
volume)

Linnaeus University i

Hyperparameters

« Zero-padding:
— Along the borders of the input volume, some pixels in the volume
will be outside the input volume

— When zero-padding is used, we pad the input volume with zeros
around the border to avoid the out-of-bounds issue

— The parameter determines the size of the zero-padding

— The size shall be half the filter size for the filters to cover all pixels
in the input volume

0 0 0 0
0 0 0 0 A 5x5 filter slides
5 | 76 | 77 | 83 over a volume with

s | a5 | o7 | o2 zero-padding 2

55 86 90 95

O |lOoO|o|]oOo | o | o

O |lOoO|O|]O | O | O

56 85 89 95 -

Linnaeus University g

Output volume

* The size of the output volume is determined by:
— The input volume size, W
— The receptive field size, F
— The stride, S
— The zero-padding, P

* The size (humber of units) of the output volume will then be:

. W — F + 2P
size = +1

S

Linnaeus University

Output volume

 Example:
— Input volume is 32x32
— Filters are 5x5
— Stride is 1 and padding 0
— Output volume is then 28x28 pixels (and depth depends on
the number of filters we use)

Linnaeus University

Convolution

« Each depth slice uses the same weights (the
weights of the filter) regardless of position in the

iInput volume

« The forward pass can then be computed as a
convolution of the unit’'s weights with the input

volume
« That's why the layer is called a Conv layer

Linnaeus University

Input Volume (+pad 1) (7x7x3)

X[:,:,0]
0 0
Depth 2
(3colors) 0 2
0 2
0 0
0 2
0 O
X[:,:
0 O
0 1
0 O
0 2
0 1
0 2
0 O
X[z,:,
0 O
0 O
0 O
M 0 0 1
0 2 1
0 125 12
0 0 O

S © © O O

Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
wO[:,:,0] wl[:,:,0] o[:,:,0]
0 -1 0 5 |6 |3
1*1+2*1 | 0 -1 TAT 6
= 0 -1 4 2
wl[:,:,1] o[:,:,1]
1 1 -1 4 7 3
1*-1+2*1+2*1 4 0 8
=3 6 4 1
wl[:,:,2]
0 -1 1
2*1+2*-1+1*-1
=1 Stride = 2
Padding = 1

Bias bOA1x1x1)

b0 [

r2,0]

Bias b1 (1x1x1)

Element-wise multiplication between
the input volume and filters (convolution)

Filter examples

« Examples of filters learned by Krizhevsky et al. in the ImageNet

challenge
« Each filteris 11x11 pixels and 3 color channels

* A total of 96 filters is used

Linnaeus University i

Pooling Layer

« Pooling layers are inserted between Conv layers

 The purpose is to reduce the size of the volumes, which
reduces the number of weights needed and also controls
overfitting

« The pooling layer acts independently on every depth slice of
the input volume

« The width and height of each slice is reduced using the max
operation

Linnaeus University

Pooling Layer

« The most common type of pooling layer is to use 2x2
filters with a stride of 2

« This cuts the width and height in half, and reduces
activations with 75%

* The max operation takes the max value of 2x2 =4
pixels

Linnaeus University i

Pooling Layer

32
pooling 5

S)

32

16

16

Linnaeus University

Pooling Layer

Single depth slice

dl1l1]2]4
max pool with 2x2 filters
DEmon 7 | 8 and stride 2
3 | 2 G]
1 | 2 BEIEEE
. >

Linnaeus University

Fully-connected Layer

« A fully-connected layer works as the hidden layers in
a regular NN

« The activation is a matrix multiplication followed by a
bias offset

Linnaeus University i

RelLU Layer

* We usually also write ReLU non-linearity as a layer

|t takes each value in the input volume, and
calculates RelLU activation of that value:

f(x) = max(0,x)

* No matrix operations are done in the ReLU layer

Linnaeus University

ConvNet Architectures

Linnaeus University

ConvNet Architectures

« A ConvNet is made up of:
— Conv layers (CONV)
— Pooling layers (POOL)
— Fully-connected layers (FC)
— ReLU non-linearity (RELU)
 The most common ConvNet architecture is:
— Stacking a few CONV-RELU layers
— Follow them with POOL layers
— When the volume is of small enough size, transition to FC layers

— The last layer is an output layer outputting a score for each
category

Linnaeus University

Example Architecture

RELUSRELU RELU RELU

l

5E)
S
=
-
=2 O
L
o

CONV

— AN MEEE,W_,@_ﬂJ

Linnaeus University

ImageNet challenge

 The ImageNet challenge is an annual contest for image
classification and localization tasks

« The training dataset consists of 1.2 million images and 1000
possible categories

« The validation set for the challenge is a random subset of
50000 images

* Images can differ in size, but in average the resolution is
482x415 pixels

« ImageNet is the benchmark for " ~ serson
image classification systems i

chair

Linnaeus University

Standard Architectures

* There are several standardized architectures that have a name
e Some of them are:

LeNet: the first successful ConvNet developed int he 1990’s
AlexNet: won the ImageNet challenge in 2012 by a wide margin

ZF Net: improvement of AlexNet that won the ImageNet challenge
2013

GoogLeNet: 2014 years winner

VGGNet: ended at second place in 2014 years ImageNet
challenge

 Let’s take a closer look at the VGGNet architecture:

Linnaeus University

INPUT

CONV3-64 + ReLU
CONV3-64 + ReLU
POOL2

CONV3-128 + ReLU
CONV3-128 + ReLU
POOL2

CONV3-256 + ReLU
CONV3-256 + RelLU
CONV3-256 + ReLU
POOL2

CONV3-512 + ReLU
CONV3-512 + ReLU
CONV3-512 + ReLU
POOL2

CONV3-512 + ReLU
CONV3-512 + ReLU
CONV3-512 + ReLU
POOL2

FC + ReLU

FC + ReLU

FC Softmax

224x224x3

224x224x64
224x224x64
112x112x64

112x112x128
112x112x128

56x56x128
56x56x256
56x56x256
56x56x256
28x28x256
28x28x512
28x28x512
28x28x512
14x14x512
14x14x512
14x14x512
14x14x512
7x7x512
4096

4096

1000

224x224 pixels and 3 color channels
Conv layer with 64 3x3x3 filters

Conv layer with 64 3x3x64 filters
Standard 2x2 pooling layer with stride 2
Conv layer with 128 3x3x64 filters
Conv layer with 128 3x3x128 filters
Standard 2x2 pooling layer with stride 2
Conv layer with 256 3x3x128 filters
Conv layer with 256 3x3x256 filters
Conv layer with 256 3x3x256 filters
Standard 2x2 pooling layer with stride 2
Conv layer with 512 3x3x256 filters
Conv layer with 512 3x3x512 filters
Conv layer with 512 3x3x512 filters
Standard 2x2 pooling layer with stride 2
Conv layer with 512 3x3x512 filters
Conv layer with 512 3x3x512 filters
Conv layer with 512 3x3x512 filters
Standard 2x2 pooling layer with stride 2
Fully-connected layer with 4096 units
Fully-connected layer with 4096 units

Output layer with 1000 possible categories

VGGNet

28 x 28 x 512 TXTx512
/= 14x14x 512 l 1

| X 4096 l » 1 x 1000

@ convolution+ReLU
["_1‘1 max pooling
| fully connected+RelLU

] softmax

Linnasus University P

VGGNet

* In total VGGNet needs around 93 MB of memory per
image for the forward pass, and around twice that for the
backward pass

 In total the architecture has 138M parameters (weights
and biases)

 We need to use GPUs to efficiently train the architecture

 Memory can however be an issue on many GPUs and we
might need to use more memory-efficient architectures

Linnaeus University i

Performance

« ConvNets have high memory and computational
requirements

 The most important hardware is a GPU that is
supported by the ConvNet library we use

« TensorFlow supports many Nvidia graphics cards,
but rarely (if any) cards from other brands

Linnaeus University

Example: MNIST

Linnaeus University

MNIST dataset
SIO|H| /

« Each image is 28x28 pixels and 1 color channel
(gray-scale)

« Training set of 60000 images
« Test set of 10000 images
* 10 categories

Linnaeus University

ConvNet for MNIST

INPUT

CONV5-32 + RelLU
POOL2

CONV5-64 + RelLU
POOL2

FC

FC

28x28x1
28x28x32
14x14x32
14x14x64
7X7x64
1024

10

28x28 pixels and 1 color channel

Conv layer with 32 5x5x1 filters
Standard 2x2 pooling layer with stride 2
Conv layer with 64 5x5x32 filters
Standard 2x2 pooling layer with stride 2
Fully-connected layer with 1024 units

Output layer with 10 possible categories

Linnaeus University

ConvNet in TensorFlow

« The script for creating and running the ConvNet on
the MNIST dataset in TensorFlow is available here:

— https://www.tensorflow.org/get_started/mnist/pros
« Training iterates 20000 times
« Each iteration trains on a batch of 50 images

Linnaeus University

Results

« Training and evaluation took around 57 minutes on
my Macbook Pro laptop

« The accuracy on the test set was 99.22%
« Compare this to a linear Softmax classifier

« Training and evaluation now took around 2 seconds
and accuracy was 91.6%

« Using ConvNets on more complex image datasets
requires expensive server hardware

Linnaeus University

Keras

« Keras is a high-level API running on top of DNN libraries, for
example TensorFlow
— https://keras.io/
« Keras is especially useful since it contains pre-trained
ImageNet models, for example VGG16 and VGG19

« Training such models is extremely time consuming, so getting
access to a pre-trained model can be very useful

Linnaeus University

Keras

Label: convertible, 98.09%

o o S

AR ing image with ‘'vggle'...
(x=452, y=33) ~ R:188 G:189 B:219

. car_wheel :

Linn&US Univel‘Sity amphibian: n

. beach_wagon: 8.18%

Google Vision API

™) Google Cloud Platform

https://cloud.google.com/vision/

N\

Cat

99%

Siamese

95%

Small To Medium Sized Cats

93%

Cat Like Mammal

92%

Thai

91%

Whiskers

Eye

Domestic Short Haired Cat

87%

77%

76%

Google Vision API

™) Google Cloud Platform

https://cloud.google.com/vision/

\

Dish

93%

Cuisine

92%

Food

91%

Gimbap

Sushi

Japanese Cuisine

Asian Food

California Roll

Smoked Salmon

88%

88%

85%

82%

75%

73%

Google Vision API

™) Google Cloud Platform

https://cloud.google.com/vision/

\

Joy BB ERERE B Very Likely

Sorrow Very Unlikely
Anger Very Unlikely
Surprise Very Unlikely

Linnaeus University

Deep Learning

Dr. Johan Hagelback

johan.hagelback@Inu.se

S
k2 ntip:/iaiguy.org

Linnaeus University P

