
Dr. Johan Hagelbäck

johan.hagelback@lnu.se

http://aiguy.org

Decision Support

Decision Support

•  One of the earliest AI problems was decision support
•  The first solution to this problem was expert systems
•  They used an often very large number of hand-

crafted if-then rules
•  These problems are suitable for a type of algorithms

called Decision Trees
•  The dataset typically mostly contains categorical

features, but can have numerical features as well.

Decision Trees

•  Decision Trees has one big advantage: the trained
model is easy to visualize and interpret

•  We can understand what the algorithm has learned
•  This can be important in some applications where

we want to investigate why the system took a
decision

•  This is commonly referred to as a completely
transparent method

Example: Weather dataset
Outlook Temperature Humidity Windy Play

sunny hot high false NO

sunny hot high true NO

overcast hot high false YES

rainy mild high false YES

rainy cool normal false YES

rainy cool normal true NO

overcast cool normal true YES

sunny mild high false NO

sunny cool normal false YES

rainy mild normal false YES

sunny mild normal true YES

overcast mild high true YES

overcast hot normal false YES

rainy mild high true NO

Building the tree

•  At each node, we need to find the attribute that best divides the
data into Yes and No.

•  To do this we calculate the information gain for each parameter
and value.

•  The attribute with the highest information gain is selected at
each node.

Find the root node
Outlook Sunny Overcast Rainy

Yes 2 4 3

No 3 0 2

Temperature Hot Mild Cool

Yes 2 4 3

No 2 2 1

Find the root node

Find the root node
Humidity High Normal

Yes 3 6

No 4 1

Find the root node
Windy True False

Yes 3 6

No 3 2

Find the root node
Attribute Gain

Outlook 0.306

Temperature 0.088

Humidity 0.211

Windy 0.107

Outlook has the highest gain and
is selected as root node

Find the root node

outlook

yes

rainy
overcast

sunny

Overcast has perfect gain = all examples
belongs to the same category: Yes

Let’s find the sunny node!

All examples with sunny

Outlook Temperature Humidity Windy Play
sunny hot high false NO
sunny hot high true NO
sunny mild high false NO
sunny cool normal false YES
sunny mild normal true YES

•  Now we use a subset of the data
•  It contains all examples with Outlook = sunny
•  5 examples

Find the sunny node
Temperature Hot Mild Cool

Yes 0 1 1

No 2 1 0

Find the sunny node

Humidity High Normal

Yes 0 2

No 3 0

Find the sunny node

Windy True False

Yes 1 1

No 1 2

Find the sunny node

outlook

humidity yes

rainy
overcast

sunny

yes no

normal high

Since humidity has perfect gain
it is selected

Let’s find the rainy node!

All examples with rainy

•  Again, we use a subset of the data
•  It contains all examples with Outlook = rainy
•  5 examples

Outlook Temperature Humidity Windy Play
rainy mild high false YES
rainy cool normal false YES
rainy cool normal true NO
rainy mild normal false YES
rainy mild high true NO

Find the rainy node
Temperature Hot Mild Cool

Yes 0 2 1

No 0 1 1

Find the rainy node

Humidity High Normal

Yes 1 2

No 1 1

Find the rainy node
Windy True False

Yes 0 3

No 2 0

Since windy has perfect gain,
it is selected

Final tree

outlook

humidity windy yes

rainy
overcast

sunny

yes no

normal high

no yes

false true

The problem

•  In most cases, there are several possible trees that
can be generated

•  The aim is to:
1.  Generate a tree that as accurately as possible can classify

the training data
2.  Generate the smallest possible tree

•  It can be tricky to satisfy both
•  The first is of highest priority

Generating a good tree

•  There is a wide range of different algorithms for
generating decision trees

•  Each tries to fulfill both criteria as much as possible
•  Weka uses an algorithm called J48

Classification

•  To classify an example, we need to traverse the tree
by following the nodes that matches the attribute
values in the example

•  When we reach a leaf node, the result (category) is
returned

Overfitting

•  Decision Trees can suffer from overfitting
•  It means that the model learned is very specific to

the training data, but can be bad at classifying
unknown examples

•  To get around this problem, learning is usually
stopped before there is a risk of overfitting

Overfitting

•  A common approach to reduce overfitting in
Decision Trees is to stop creating more branches if
there is only a very small increase in gain

•  We can set a minimum threshold of how large the
gain must be to allow a new branch to be created

•  There is no universal answer to which limit to use
•  You have to experiment on the dataset you use

When to use Decision Trees

•  As mentioned, one big advantage of DTs is that we
can interpret the trained model

•  There are some other benefits of DTs
•  They work on both numerical and nominal attributes

without pre-processing the data, which many other
algorithms don’t

•  They also support probabilistic reasoning of
assignments, which we did when we returned the
most probable category

When to use Decision Trees

•  The major drawback is that DTs are not very good for complex
learning problems

•  If we have lots of categories, the decision tree tends to be very
complicated and will most likely make poor predictions

•  Another disadvantage is that they can only do simple greater-
than/less-than decisions for numerical attributes

•  They work best if we have combinations of numerical and
nominal data, and few categories (which many real-world
problems satisfy)

Weka

•  Weka’s standard Decision Tree classifier is called
J48.

•  When using J48 on the Weather dataset we get the
following result:

R

•  In R, we can use an algorithm called CART
•  The dataset needs to be in csv format
•  The R script looks like this:

R script
#Load the ML library
library(caret)

#Read the dataset
dataset <- read.csv("FIFA_skill.csv")

#setup 10-fold cross validation
control <- trainControl(method="cv", number=10)
metric <- "Accuracy"

#Train model using CART
set.seed(7)
cart <- train(PlayerSkill~., data=dataset, method="rpart",

 metric=metric, trControl=control)

#Print result
print(cart)

R result
Warning message:
In nominalTrainWorkflow(x = x, y = y, wts = weights, info = trainInfo, :
 There were missing values in resampled performance measures.
>
> #Print result
> print(cart)
CART

19 samples
 3 predictor
 2 classes: 'bad', 'good'

No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 17, 17, 17, 17, 17, 17, ...
Resampling results:

 Accuracy Kappa
 0.55 0

R result

•  The warning message from R means that the 10-fold
CV split the dataset so one class was missing in
some iteration

•  This has large impact on the result
•  R needs more data to accurately predict the dataset
•  If we make a copy of each example in the dataset

(twice as much data), the result is:

R result
CART

38 samples
 3 predictor
 2 classes: 'bad', 'good'

No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 35, 34, 34, 34, 34, 34, ...
Resampling results across tuning parameters:

 cp Accuracy Kappa
 0.0000000 0.8416667 0.69
 0.3333333 0.8416667 0.69
 0.6666667 0.6083333 0.19

Accuracy was used to select the optimal model using the largest value.
The final value used for the model was cp = 0.3333333.

Dr. Johan Hagelbäck

johan.hagelback@lnu.se

http://aiguy.org

Decision Support

