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Decision Support 

•  One of the earliest AI problems was decision support 
•  The first solution to this problem was expert systems 
•  They used an often very large number of hand-

crafted if-then rules 
•  These problems are suitable for a type of algorithms 

called Decision Trees 
•  The dataset typically mostly contains categorical 

features, but can have numerical features as well. 



Decision Trees 

•  Decision Trees has one big advantage: the trained 
model is easy to visualize and interpret 

•  We can understand what the algorithm has learned 
•  This can be important in some applications where 

we want to investigate why the system took a 
decision 

•  This is commonly referred to as a completely 
transparent method 



Example: Weather dataset 
Outlook Temperature Humidity Windy Play 

sunny hot high false NO 

sunny hot high true NO 

overcast hot high false YES 

rainy mild high false YES 

rainy cool normal false YES 

rainy cool normal true NO 

overcast cool normal true YES 

sunny mild high false NO 

sunny cool normal false YES 

rainy mild normal false YES 

sunny mild normal true YES 

overcast mild high true YES 

overcast hot normal false YES 

rainy mild high true NO 



Building the tree 

•  At each node, we need to find the attribute that best divides the 
data into Yes and No. 

•  To do this we calculate the information gain for each parameter 
and value. 

•  The attribute with the highest information gain is selected at 
each node. 



Find the root node 
Outlook Sunny Overcast Rainy 

Yes 2 4 3 

No 3 0 2 



Temperature Hot Mild Cool 

Yes 2 4 3 

No 2 2 1 

Find the root node 



Find the root node 
Humidity High Normal 

Yes 3 6 

No 4 1 



Find the root node 
Windy True False 

Yes 3 6 

No 3 2 



Find the root node 
Attribute Gain 

Outlook 0.306 

Temperature 0.088 

Humidity 0.211 

Windy 0.107 

Outlook has the highest gain and 
is selected as root node 



Find the root node 

outlook 

yes 

rainy 
overcast 

sunny 

Overcast has perfect gain = all examples 
belongs to the same category: Yes 

Let’s find the sunny node! 



All examples with sunny 

Outlook Temperature Humidity Windy Play 
sunny hot high false NO 
sunny hot high true NO 
sunny mild high false NO 
sunny cool normal false YES 
sunny mild normal true YES 

•  Now we use a subset of the data 
•  It contains all examples with Outlook = sunny 
•  5 examples 



Find the sunny node 
Temperature Hot Mild Cool 

Yes 0 1 1 

No 2 1 0 



Find the sunny node 

Humidity High Normal 

Yes 0 2 

No 3 0 



Find the sunny node 

Windy True False 

Yes 1 1 

No 1 2 



Find the sunny node 

outlook 

humidity yes 

rainy 
overcast 

sunny 

yes no 

normal high 

Since humidity has perfect gain 
it is selected 

Let’s find the rainy node! 



All examples with rainy 

•  Again, we use a subset of the data 
•  It contains all examples with Outlook = rainy 
•  5 examples 

Outlook Temperature Humidity Windy Play 
rainy mild high false YES 
rainy cool normal false YES 
rainy cool normal true NO 
rainy mild normal false YES 
rainy mild high true NO 



Find the rainy node 
Temperature Hot Mild Cool 

Yes 0 2 1 

No 0 1 1 



Find the rainy node 

Humidity High Normal 

Yes 1 2 

No 1 1 



Find the rainy node 
Windy True False 

Yes 0 3 

No 2 0 

Since windy has perfect gain, 
it is selected 



Final tree 

outlook 

humidity windy yes 

rainy 
overcast 

sunny 

yes no 

normal high 

no yes 

false true 



The problem 

•  In most cases, there are several possible trees that 
can be generated 

•  The aim is to: 
1.  Generate a tree that as accurately as possible can classify 

the training data 
2.  Generate the smallest possible tree 

•  It can be tricky to satisfy both 
•  The first is of highest priority 



Generating a good tree 

•  There is a wide range of different algorithms for 
generating decision trees 

•  Each tries to fulfill both criteria as much as possible 
•  Weka uses an algorithm called J48 



Classification 

•  To classify an example, we need to traverse the tree 
by following the nodes that matches the attribute 
values in the example 

•  When we reach a leaf node, the result (category) is 
returned 



Overfitting 

•  Decision Trees can suffer from overfitting 
•  It means that the model learned is very specific to 

the training data, but can be bad at classifying 
unknown examples 

•  To get around this problem, learning is usually 
stopped before there is a risk of overfitting 



Overfitting 

•  A common approach to reduce overfitting in 
Decision Trees is to stop creating more branches if 
there is only a very small increase in gain 

•  We can set a minimum threshold of how large the 
gain must be to allow a new branch to be created 

•  There is no universal answer to which limit to use 
•  You have to experiment on the dataset you use 



When to use Decision Trees 

•  As mentioned, one big advantage of DTs is that we 
can interpret the trained model 

•  There are some other benefits of DTs 
•  They work on both numerical and nominal attributes 

without pre-processing the data, which many other 
algorithms don’t 

•  They also support probabilistic reasoning of 
assignments, which we did when we returned the 
most probable category 



When to use Decision Trees 

•  The major drawback is that DTs are not very good for complex 
learning problems 

•  If we have lots of categories, the decision tree tends to be very 
complicated and will most likely make poor predictions 

•  Another disadvantage is that they can only do simple greater-
than/less-than decisions for numerical attributes 

•  They work best if we have combinations of numerical and 
nominal data, and few categories (which many real-world 
problems satisfy) 



Weka 

•  Weka’s standard Decision Tree classifier is called 
J48. 

•  When using J48 on the Weather dataset we get the 
following result: 



R 

•  In R, we can use an algorithm called CART 
•  The dataset needs to be in csv format 
•  The R script looks like this: 



R script 
#Load the ML library 
library(caret) 
 
#Read the dataset 
dataset <- read.csv("FIFA_skill.csv") 
 
#setup 10-fold cross validation 
control <- trainControl(method="cv", number=10) 
metric <- "Accuracy" 
 
#Train model using CART 
set.seed(7) 
cart <- train(PlayerSkill~., data=dataset, method="rpart",  

  metric=metric, trControl=control) 
 
#Print result 
print(cart) 



R result 
Warning message: 
In nominalTrainWorkflow(x = x, y = y, wts = weights, info = trainInfo,  : 
  There were missing values in resampled performance measures. 
>  
> #Print result 
> print(cart) 
CART  
 
19 samples 
 3 predictor 
 2 classes: 'bad', 'good'  
 
No pre-processing 
Resampling: Cross-Validated (10 fold)  
Summary of sample sizes: 17, 17, 17, 17, 17, 17, ...  
Resampling results: 
 
  Accuracy  Kappa 
  0.55      0  



R result 

•  The warning message from R means that the 10-fold 
CV split the dataset so one class was missing in 
some iteration 

•  This has large impact on the result 
•  R needs more data to accurately predict the dataset 
•  If we make a copy of each example in the dataset 

(twice as much data), the result is: 



R result 
CART  
 
38 samples 
 3 predictor 
 2 classes: 'bad', 'good'  
 
No pre-processing 
Resampling: Cross-Validated (10 fold)  
Summary of sample sizes: 35, 34, 34, 34, 34, 34, ...  
Resampling results across tuning parameters: 
 
  cp         Accuracy   Kappa 
  0.0000000  0.8416667  0.69  
  0.3333333  0.8416667  0.69  
  0.6666667  0.6083333  0.19  
 
Accuracy was used to select the optimal model using  the largest value. 
The final value used for the model was cp = 0.3333333.  



Dr. Johan Hagelbäck 

johan.hagelback@lnu.se 
 
http://aiguy.org 

Decision Support 


