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Recommendation Systems



Recommendation Systems

• The task:
– Find new items (movies, books, music, …) you may like 

based on what you have liked before
• Usages:

– Shopping sites: find items you didn’t know existed but that 
you may like

– Streaming sites like Netflix/Spotify: find movies/songs you 
may like but have never heard of

– Sites like Reddit: suggest new topics that you may like



The most simple approach

• You want to see a new movie, but you don’t know which 
movies are good

• You ask your friends about what movies they liked that you 
haven’t seen yet

• You can listen more to friends that you know have good ”taste”, 
meaning that they usually like the same movies as you do

• Drawbacks:
– Time consuming
– Very limited amount of data, meaning that you miss movies none 

of your friends have seen



Collaborative Filtering

• Collaborative Filtering is a set of techniques for making 
automatic recommendations for a user

• The term was first used by David Goldberg at Xerox 
PARC in 1992

• He developed a system for automatic recommendation of 
documents based on what a user previously has labeled 
as interesting or uninteresting



User Preferences

• The first step in developing a Collaborative Filtering system is 
to store the data, i.e. user preferences

• Preferences must be numeric, for example a scale between 1 
and 5 for how good a movie is

• Non-numeric preferences can be translated:
– Buy: 1, Not buy: 0
– Buy: 2, Browsed: 1, Not buy: 0
– Liked: 1, Disliked: -1, No vote: 0

• We will use a small dataset consisting of seven users and six 
movies:



The dataset
Movie Lisa Gene Michael Claudia Mick Jack Toby

Lady in the Water 2.5 3.0 2.5 3.0 3.0

Snakes on a Plane 3.5 3.5 3.0 3.5 4.0 4.0 4.5

Just My Luck 3.0 1.5 3.0 2.0

Superman Returns 3.5 5.0 3.5 4.0 3.0 5.0 4.0

You, Me and Dupree 2.5 3.5 2.5 2.0 3.5 1.0

The Night Listener 3.0 3.0 4.0 4.5 3.0 3.0



How to find a new movie?

• The most simple approach is to average the score 
on movies you haven’t seen:

Movie Lisa Gene Mike Claudia Mick Jack Toby

Lady in the Water 2.5 3.0 2.5 3.0 3.0 2.8

Snakes on a Plane 3.5 3.5 3.0 3.5 4.0 4.0 4.5

Just My Luck 3.0 1.5 3.0 2.0 2.38

Superman Returns 3.5 5.0 3.5 4.0 3.0 5.0 4.0

You, Me and Dupree 2.5 3.5 2.5 2.0 3.5 1.0

The Night Listener 3.0 3.0 4.0 4.5 3.0 3.0 3.42

But that does not mean that the other users
that have given high ratings for Night Listener
has the same taste as Toby...



A better approach



Finding Similar Users

• A better approach is to find users similar to yourself
• This is done by comparing every user with every 

other user and calculate a similarity score
• There are many ways to calculate similarity
• Here we will take a look at two of them:

– Euclidean Distance
– Pearson Correlation
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Euclidean Distance

• The distance is however smaller for people who are 
more similar, but we want the opposite!

• Therefore we have to invert it, and add 1 to avoid 
division by zero:



Euclidean Distance

float euclidean(User A, User B)
//Init variables
sim=0
//Counter for number of matching products
n = 0
//Iterate over all rating combinations
for (Rating rA : A.rating)

for (Rating rB : B.rating)
if (rA == rB)

sim += (rA.score – rB.score)**2 //a*a
n += 1

//No ratings in common – return 0
if (n == 0)

return 0
//Calculate inverted score
inv = 1 / (1 + sim)
return inv

Note! For performance reasons we skip the
square root calculation. This will not affect the
relative distance between users!



Pearson Correlation Score

• PCS is a more sophisticated way to calculate similarity
• The correlation coefficient is a measure of how well two sets of 

data fit on a straight line
• If all data points fit on the straight line, we have a perfect match 

resulting on correlation score 1
• PCS tends to give better score for data that isn’t well 

normalized, for example if a harsh user routinely give lower 
scores than the other users

• It is also more robust to grade inflation, where one user 
consistently gives higher (or lower) scores than the other users 



Pearson Correlation Score
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Pearson Correlation Score
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Pearson Correlation Score

• The Pearson Correlation score r is calculated as:

n Number of ratings in common

sum1, sum2 Sum of ratings for user 1 and user 2

sum1sq, sum2sq Sum of squared ratings for user 1 and user 2

pSum Product of ratings of user 1 and user 2



Pearson Correlation Score
float pearson(User A, User B)

//Init variables
sum1=0, sum2=0, sum1sq=0, sum2sq=0, pSum=0
//Counter for number of matching products
n = 0
//Iterate over all rating combinations
for (Rating rA : A.rating)

for (Rating rB : B.rating)
if (rA == rB)

sum1 += rA.score //sum of ratings for user A
sum2 += rB.score //sum of ratings for user B
sum1sq += rA.score**2 //sum of squared ratings for A
sum2sq += rB.score**2 //sum of squared ratings for B
pSum += rA.score * rB.score //product of ratings from A and B
n += 1 //number of ratings in common

//No ratings in common – return 0
if (n == 0)

return 0
//Calculate Pearson
num = pSum – (sum1 * sum2 / n)
den = sqrt((sum1sq – sum1**2 / n) * (sum2sq – sum2**2 / n))
return num/den



Find top three matches for a user

• This can be done as follows:
– Calculate the similarity score between the user and all other 

users
– Store the scores in a list
– Sort the list in descending order (highest scores first)
– Return the first 3 entries in the list



Find top three matches for a user



Which similarity metric to use?

• There are many other metrics than the two mentioned:
– Manhattan Distance
– Jaccard Coefficient
– …

• There is no universal answer to which one is the best to 
use

• It depends on the application
• Try at least Euclidean and Pearson to see which one 

works best in your case!



Finding recommended movies



Recommending Items

• Finding similar users is just the first step
• What we really want to know is a movie recommendation
• To do this, we need to calculate a weighted score for 

each user and movie

• Task:  - find a movie recommendation for Toby

• We create a table with user similarities and weighted 
rating scores:



Weighted Scores

• Calculate the weighted scores as the similarity between Toby and the 
other users multiplied by the other users ratings (using Pearson):

User Similarity
Toby

Night W Score,
Night

Lady W Score,
Lady

Luck W Score,
Luck

Lisa 0.99 3.0 2.97 2.5 2.48 3.0 2.97

Gene 0.38 3.0 1.14 3.0 1.14 1.5 0.57

Mike -1.00 4 2.5

Claudia 0.89 4.5 4.02 3.0 2.68

Mick 0.92 3.0 2.77 3.0 2.77 2.0 1.85

Jack 0.66 3.0 1.99 3.0 1.99

Note that we don’t include Mike in the calculations since he 
has a similarity of 0 or below for Toby



User Similarity
Toby

Night W Score,
Night

Lady W Score,
Lady

Luck W Score,
Luck

Lisa 0.99 3.0 2.97 2.5 2.48 3.0 2.97

Gene 0.38 3.0 1.14 3.0 1.14 1.5 0.57

Mike -1.00 4 2.5

Claudia 0.89 4.5 4.02 3.0 2.68

Mick 0.92 3.0 2.77 3.0 2.77 2.0 1.85

Jack 0.66 3.0 1.99 3.0 1.99

Σws 12.89 8.38 8.07

Weighted Scores

• Calculate the sum of weighted scores:



User Similarity
Toby

Night W Score,
Night

Lady W Score,
Lady

Luck W Score,
Luck

Lisa 0.99 3.0 2.97 2.5 2.48 3.0 2.97

Gene 0.38 3.0 1.14 3.0 1.14 1.5 0.57

Mike -1.00 4 2.5

Claudia 0.89 4.5 4.02 3.0 2.68

Mick 0.92 3.0 2.77 3.0 2.77 2.0 1.85

Jack 0.66 3.0 1.99 3.0 1.99

Σws 12.89 8.38 8.07

Σsim 3.84 2.95 3.18

Weighted Scores

• Calculate the sum of similarity for all users who has rated each movie:



User Similarity
Toby

Night W Score,
Night

Lady W Score,
Lady

Luck W Score,
Luck

Lisa 0.99 3.0 2.97 2.5 2.48 3.0 2.97

Gene 0.38 3.0 1.14 3.0 1.14 1.5 0.57

Mike -1.00 4 2.5

Claudia 0.89 4.5 4.02 3.0 2.68

Mick 0.92 3.0 2.77 3.0 2.77 2.0 1.85

Jack 0.66 3.0 1.99 3.0 1.99

Σws 12.89 8.38 8.07

Σsim 3.84 2.95 3.18

Σws / Σsim 3.35 2.83 2.53

Weighted Scores

• Divide the sum of weighted scores with sum of similarity:



User Similarity
Toby

Night W Score,
Night

Lady W Score,
Lady

Luck W Score,
Luck

Lisa 0.99 3.0 2.97 2.5 2.48 3.0 2.97

Gene 0.38 3.0 1.14 3.0 1.14 1.5 0.57

Mike -1.00 4 2.5

Claudia 0.89 4.5 4.02 3.0 2.68

Mick 0.92 3.0 2.77 3.0 2.77 2.0 1.85

Jack 0.66 3.0 1.99 3.0 1.99

Σws 12.89 8.38 8.07

Σsim 3.84 2.95 3.18

Σws / Σsim 3.35 2.83 2.53

Which movie shall Toby see?

• The Night Listener has the highest score and is the top recommendation:



Euclidean Distance

• Same table using Euclidean Distance as similarity score:

User Similarity
Toby

Night W Score,
Night

Lady W Score,
Lady

Luck W Score,
Luck

Lisa 0.22 3.0 0.66 2.5 0.55 3.0 0.66

Gene 0.11 3.0 0.33 3.0 0.33 1.5 0.17

Mike 0.29 4 1.16 2.5 0.73

Claudia 0.24 4.5 1.08 3.0 0.72

Mick 0.31 3.0 0.93 3.0 0.93 2.0 0.62

Jack 0.12 3.0 0.36 3.0 0.36

Σws 4.52 2.90 2.17

Σsim 1.29 1.05 0.88

Σws / Σsim 3.50 2.76 2.46

Now Mike is included since similarity is not 0 or
below when Euclidean is used



Which movie shall Toby see?

• The Night Listener is still the top recommendation for Toby:

User Similarity
Toby

Night W Score,
Night

Lady W Score,
Lady

Luck W Score,
Luck

Lisa 0.22 3.0 0.66 2.5 0.55 3.0 0.66

Gene 0.11 3.0 0.33 3.0 0.33 1.5 0.17

Mike 0.29 4 1.16 2.5 0.73

Claudia 0.24 4.5 1.08 3.0 0.72

Mick 0.31 3.0 0.93 3.0 0.93 2.0 0.62

Jack 0.12 3.0 0.36 3.0 0.36

Σws 4.52 2.90 2.17

Σsim 1.29 1.05 0.88

Σws / Σsim 3.50 2.76 2.46



Web application

• This is an example of how the recommendation system 
can look like when implemented as a web application:



Find matching movies



Finding matching movies

• It is also possible to find top matching movies for a movie
• To do this we need to transpose the dataset so movies 

replaces users:

Lisa: [ (Lady in the Water : 2.5), (Snakes on a Plane : 3.5) ]
Gene: [ (Lady in the Water : 3.0), (Snakes on a Plane : 3.5) ]

From:

Lady in the Water: [ (Lisa : 2.5), (Gene : 3.0) ]
Snakes on a Plane: [ (Lisa : 3.5), (Gene : 3.5) ]

To:



Movie Lisa Gene Mich
ael

Claud
ia

Mick Jack Toby

Lady in the 
Water

2.5 3.0 2.5 3.0 3.0

Snakes on a 
Plane

3.5 3.5 3.0 3.5 4.0 4.0 4.5

Just My Luck 3.0 1.5 3.0 2.0

Superman 
Returns

3.5 5.0 3.5 4.0 3.0 5.0 4.0

You, Me and 
Dupree

2.5 3.5 2.5 2.0 3.5 1.0

The Night 
Listener

3.0 3.0 4.0 4.5 3.0 3.0

User Lady Snake
s

Luck Super
man

Dupre
e

Night

Lisa 2.5 3.5 3.0 3.5 2.5 3.0

Gene 3.0 3.5 1.5 5.0 3.5 3.0

Michael 2.5 3.0 3.5 4.0

Claudia 3.5 3.0 4.0 2.5 4.5

Mick 3.0 4.0 2.0 3.0 2.0 3.0

Jack 3.0 4.0 5.0 3.5 3.0

Toby 4.5 4.0 1.0



Finding matching products

• We can then use the same method as we previously used to 
find similar users to find matching movies for a movie:

• Transposing the data set is however a rather slow operation if 
the data set is large



User-based collaborative filtering

• To find recommendations for a user, the approach we have 
used so far requires calculating similarity between a user and 
all other users

• This approach is called user-based collaborative filtering
• This works for small data sets, but will be very ineffective for 

large data sets
• Also, if there are many users there is most likely very little 

overlap between most users
• There is another approach we can use:



Item-based collaborative filtering

• The other approach is called item-based collaborative filtering
• We can make an assumption that the comparison between 

movies will not change as much as comparisons between 
users

• We can therefore pre-calculate and store the top N matching 
movies for each movie in a new data set

• This requires that we transpose the dataset so we can find top 
matching movies for each movie



Recommending movies again

• We can then use the pre-generated dataset to find 
recommended movies

• Now, similarity between users are not involved at all
• Instead we use the pre-calculated similarity score 

between movies and generate a similar table:



Recommending movies, IB

Movie Rating
(Toby)

Sim
Night

WR Night Sim
Lady

WR
Lady

Sim
Luck

WR
Luck

Snakes 4.5 0.182 0.222 0.105

Superman 4.0 0.103 0.091 0.065

Dupree 1.0 0.148 0.4 0.182

• First, fill in similarity between movies using the pre-generated 
matching movies table:

• The first row is similarity between
Snakes on a Plane and the other
three movies:



Recommending movies, IB

Movie Rating
(Toby)

Sim
Night

WR Night Sim
Lady

WR
Lady

Sim
Luck

WR
Luck

Snakes 4.5 0.182 0.818 0.222 0.999 0.105 0.474

Superman 4.0 0.103 0.412 0.091 0.363 0.065 0.258

Dupree 1.0 0.148 0.148 0.4 0.4 0.182 0.182

Σwr 1.378 1.764 0.914

Σsim 0.433 0.713 0.352

Σwr / Σsim 3.183 2.598 2.473

• Calculate sum of weighted ratings and similarities:

• The Night Listener is still the recommended movie for Toby



Comparison

• The results from User-Based and Item-Based Collaborative 
Filtering differs slightly:



User-Based or Item-Based?

• Getting a list of recommendations is faster for item-based for 
large datasets

• The drawback is that the similar items table must be generated 
and updated regularly, which is a very slow operation

• Item-Based is usually more accurate on sparse datasets, i.e. 
datasets with little overlap between users

• Our dataset is however dense; every user has rated nearly 
every movie



Real-world data set

• The GroupLens project at University of Minnesota has 
collected and generated several datasets for public use

• The dataset that is most interesting for us is MovieLens:
– https://grouplens.org/datasets/movielens/

• The dataset is generated from the movie 
recommendation service movielens.org

• The dataset comes in two sizes, the full dataset with 27 
million ratings or a smaller dataset with 100 000 ratings

https://grouplens.org/datasets/movielens/


MovieLens dataset
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