
Dr. Johan Hagelbäck

johan.hagelback@lnu.se

http://aiguy.org

Recommendation Systems

Recommendation Systems

• The task:
– Find new items (movies, books, music, …) you may like

based on what you have liked before
• Usages:

– Shopping sites: find items you didn’t know existed but that
you may like

– Streaming sites like Netflix/Spotify: find movies/songs you
may like but have never heard of

– Sites like Reddit: suggest new topics that you may like

The most simple approach

• You want to see a new movie, but you don’t know which
movies are good

• You ask your friends about what movies they liked that you
haven’t seen yet

• You can listen more to friends that you know have good ”taste”,
meaning that they usually like the same movies as you do

• Drawbacks:
– Time consuming
– Very limited amount of data, meaning that you miss movies none

of your friends have seen

Collaborative Filtering

• Collaborative Filtering is a set of techniques for making
automatic recommendations for a user

• The term was first used by David Goldberg at Xerox
PARC in 1992

• He developed a system for automatic recommendation of
documents based on what a user previously has labeled
as interesting or uninteresting

User Preferences

• The first step in developing a Collaborative Filtering system is
to store the data, i.e. user preferences

• Preferences must be numeric, for example a scale between 1
and 5 for how good a movie is

• Non-numeric preferences can be translated:
– Buy: 1, Not buy: 0
– Buy: 2, Browsed: 1, Not buy: 0
– Liked: 1, Disliked: -1, No vote: 0

• We will use a small dataset consisting of seven users and six
movies:

The dataset
Movie Lisa Gene Michael Claudia Mick Jack Toby

Lady in the Water 2.5 3.0 2.5 3.0 3.0

Snakes on a Plane 3.5 3.5 3.0 3.5 4.0 4.0 4.5

Just My Luck 3.0 1.5 3.0 2.0

Superman Returns 3.5 5.0 3.5 4.0 3.0 5.0 4.0

You, Me and Dupree 2.5 3.5 2.5 2.0 3.5 1.0

The Night Listener 3.0 3.0 4.0 4.5 3.0 3.0

How to find a new movie?

• The most simple approach is to average the score
on movies you haven’t seen:

Movie Lisa Gene Mike Claudia Mick Jack Toby

Lady in the Water 2.5 3.0 2.5 3.0 3.0 2.8

Snakes on a Plane 3.5 3.5 3.0 3.5 4.0 4.0 4.5

Just My Luck 3.0 1.5 3.0 2.0 2.38

Superman Returns 3.5 5.0 3.5 4.0 3.0 5.0 4.0

You, Me and Dupree 2.5 3.5 2.5 2.0 3.5 1.0

The Night Listener 3.0 3.0 4.0 4.5 3.0 3.0 3.42

But that does not mean that the other users
that have given high ratings for Night Listener
has the same taste as Toby...

A better approach

Finding Similar Users

• A better approach is to find users similar to yourself
• This is done by comparing every user with every

other user and calculate a similarity score
• There are many ways to calculate similarity
• Here we will take a look at two of them:

– Euclidean Distance
– Pearson Correlation

Euclidean Distance

5

4

3

2

1

1 2 3 4 5

Snakes on
a Plane

You, Me and
Dupree

Toby
JackMick

Claudia
Lisa

Gene

Question: which user is the
best match for Toby?

Euclidean Distance

5

4

3

2

1

1 2 3 4 5

Snakes on
a Plane

You, Me and
Dupree

Toby
JackMick

Claudia
Lisa

Gene

For user Toby,
Mick is the closest
match!

Euclidean Distance

5

4

3

2

1

1 2 3 4 5

Snakes on
a Plane

You, Me and
Dupree

Toby
JackMick

Claudia
Lisa

Gene

Euclidean Distance

• The distance is however smaller for people who are
more similar, but we want the opposite!

• Therefore we have to invert it, and add 1 to avoid
division by zero:

Euclidean Distance

float euclidean(User A, User B)
//Init variables
sim=0
//Counter for number of matching products
n = 0
//Iterate over all rating combinations
for (Rating rA : A.rating)

for (Rating rB : B.rating)
if (rA == rB)

sim += (rA.score – rB.score)**2 //a*a
n += 1

//No ratings in common – return 0
if (n == 0)

return 0
//Calculate inverted score
inv = 1 / (1 + sim)
return inv

Note! For performance reasons we skip the
square root calculation. This will not affect the
relative distance between users!

Pearson Correlation Score

• PCS is a more sophisticated way to calculate similarity
• The correlation coefficient is a measure of how well two sets of

data fit on a straight line
• If all data points fit on the straight line, we have a perfect match

resulting on correlation score 1
• PCS tends to give better score for data that isn’t well

normalized, for example if a harsh user routinely give lower
scores than the other users

• It is also more robust to grade inflation, where one user
consistently gives higher (or lower) scores than the other users

Pearson Correlation Score

5

4

3

2

1

1 2 3 4 5

Gene

Mick

Superman

Snakes

Just My Luck

Dupree

Lady
Night Listener

Fairly bad fit: the data
points are far from the
line.

Correlation: 0.4

Pearson Correlation Score

5

4

3

2

1

1 2 3 4 5

Lisa

Jack

Superman

Snakes

Dupree
Lady

Fairly good fit: the data
points are close to the
line.

Correlation: 0.75

Night Listener

Pearson Correlation Score

• The Pearson Correlation score r is calculated as:

n Number of ratings in common

sum1, sum2 Sum of ratings for user 1 and user 2

sum1sq, sum2sq Sum of squared ratings for user 1 and user 2

pSum Product of ratings of user 1 and user 2

Pearson Correlation Score
float pearson(User A, User B)

//Init variables
sum1=0, sum2=0, sum1sq=0, sum2sq=0, pSum=0
//Counter for number of matching products
n = 0
//Iterate over all rating combinations
for (Rating rA : A.rating)

for (Rating rB : B.rating)
if (rA == rB)

sum1 += rA.score //sum of ratings for user A
sum2 += rB.score //sum of ratings for user B
sum1sq += rA.score**2 //sum of squared ratings for A
sum2sq += rB.score**2 //sum of squared ratings for B
pSum += rA.score * rB.score //product of ratings from A and B
n += 1 //number of ratings in common

//No ratings in common – return 0
if (n == 0)

return 0
//Calculate Pearson
num = pSum – (sum1 * sum2 / n)
den = sqrt((sum1sq – sum1**2 / n) * (sum2sq – sum2**2 / n))
return num/den

Find top three matches for a user

• This can be done as follows:
– Calculate the similarity score between the user and all other

users
– Store the scores in a list
– Sort the list in descending order (highest scores first)
– Return the first 3 entries in the list

Find top three matches for a user

Which similarity metric to use?

• There are many other metrics than the two mentioned:
– Manhattan Distance
– Jaccard Coefficient
– …

• There is no universal answer to which one is the best to
use

• It depends on the application
• Try at least Euclidean and Pearson to see which one

works best in your case!

Finding recommended movies

Recommending Items

• Finding similar users is just the first step
• What we really want to know is a movie recommendation
• To do this, we need to calculate a weighted score for

each user and movie

• Task: - find a movie recommendation for Toby

• We create a table with user similarities and weighted
rating scores:

Weighted Scores

• Calculate the weighted scores as the similarity between Toby and the
other users multiplied by the other users ratings (using Pearson):

User Similarity
Toby

Night W Score,
Night

Lady W Score,
Lady

Luck W Score,
Luck

Lisa 0.99 3.0 2.97 2.5 2.48 3.0 2.97

Gene 0.38 3.0 1.14 3.0 1.14 1.5 0.57

Mike -1.00 4 2.5

Claudia 0.89 4.5 4.02 3.0 2.68

Mick 0.92 3.0 2.77 3.0 2.77 2.0 1.85

Jack 0.66 3.0 1.99 3.0 1.99

Note that we don’t include Mike in the calculations since he
has a similarity of 0 or below for Toby

User Similarity
Toby

Night W Score,
Night

Lady W Score,
Lady

Luck W Score,
Luck

Lisa 0.99 3.0 2.97 2.5 2.48 3.0 2.97

Gene 0.38 3.0 1.14 3.0 1.14 1.5 0.57

Mike -1.00 4 2.5

Claudia 0.89 4.5 4.02 3.0 2.68

Mick 0.92 3.0 2.77 3.0 2.77 2.0 1.85

Jack 0.66 3.0 1.99 3.0 1.99

Σws 12.89 8.38 8.07

Weighted Scores

• Calculate the sum of weighted scores:

User Similarity
Toby

Night W Score,
Night

Lady W Score,
Lady

Luck W Score,
Luck

Lisa 0.99 3.0 2.97 2.5 2.48 3.0 2.97

Gene 0.38 3.0 1.14 3.0 1.14 1.5 0.57

Mike -1.00 4 2.5

Claudia 0.89 4.5 4.02 3.0 2.68

Mick 0.92 3.0 2.77 3.0 2.77 2.0 1.85

Jack 0.66 3.0 1.99 3.0 1.99

Σws 12.89 8.38 8.07

Σsim 3.84 2.95 3.18

Weighted Scores

• Calculate the sum of similarity for all users who has rated each movie:

User Similarity
Toby

Night W Score,
Night

Lady W Score,
Lady

Luck W Score,
Luck

Lisa 0.99 3.0 2.97 2.5 2.48 3.0 2.97

Gene 0.38 3.0 1.14 3.0 1.14 1.5 0.57

Mike -1.00 4 2.5

Claudia 0.89 4.5 4.02 3.0 2.68

Mick 0.92 3.0 2.77 3.0 2.77 2.0 1.85

Jack 0.66 3.0 1.99 3.0 1.99

Σws 12.89 8.38 8.07

Σsim 3.84 2.95 3.18

Σws / Σsim 3.35 2.83 2.53

Weighted Scores

• Divide the sum of weighted scores with sum of similarity:

User Similarity
Toby

Night W Score,
Night

Lady W Score,
Lady

Luck W Score,
Luck

Lisa 0.99 3.0 2.97 2.5 2.48 3.0 2.97

Gene 0.38 3.0 1.14 3.0 1.14 1.5 0.57

Mike -1.00 4 2.5

Claudia 0.89 4.5 4.02 3.0 2.68

Mick 0.92 3.0 2.77 3.0 2.77 2.0 1.85

Jack 0.66 3.0 1.99 3.0 1.99

Σws 12.89 8.38 8.07

Σsim 3.84 2.95 3.18

Σws / Σsim 3.35 2.83 2.53

Which movie shall Toby see?

• The Night Listener has the highest score and is the top recommendation:

Euclidean Distance

• Same table using Euclidean Distance as similarity score:

User Similarity
Toby

Night W Score,
Night

Lady W Score,
Lady

Luck W Score,
Luck

Lisa 0.22 3.0 0.66 2.5 0.55 3.0 0.66

Gene 0.11 3.0 0.33 3.0 0.33 1.5 0.17

Mike 0.29 4 1.16 2.5 0.73

Claudia 0.24 4.5 1.08 3.0 0.72

Mick 0.31 3.0 0.93 3.0 0.93 2.0 0.62

Jack 0.12 3.0 0.36 3.0 0.36

Σws 4.52 2.90 2.17

Σsim 1.29 1.05 0.88

Σws / Σsim 3.50 2.76 2.46

Now Mike is included since similarity is not 0 or
below when Euclidean is used

Which movie shall Toby see?

• The Night Listener is still the top recommendation for Toby:

User Similarity
Toby

Night W Score,
Night

Lady W Score,
Lady

Luck W Score,
Luck

Lisa 0.22 3.0 0.66 2.5 0.55 3.0 0.66

Gene 0.11 3.0 0.33 3.0 0.33 1.5 0.17

Mike 0.29 4 1.16 2.5 0.73

Claudia 0.24 4.5 1.08 3.0 0.72

Mick 0.31 3.0 0.93 3.0 0.93 2.0 0.62

Jack 0.12 3.0 0.36 3.0 0.36

Σws 4.52 2.90 2.17

Σsim 1.29 1.05 0.88

Σws / Σsim 3.50 2.76 2.46

Web application

• This is an example of how the recommendation system
can look like when implemented as a web application:

Find matching movies

Finding matching movies

• It is also possible to find top matching movies for a movie
• To do this we need to transpose the dataset so movies

replaces users:

Lisa: [(Lady in the Water : 2.5), (Snakes on a Plane : 3.5)]
Gene: [(Lady in the Water : 3.0), (Snakes on a Plane : 3.5)]

From:

Lady in the Water: [(Lisa : 2.5), (Gene : 3.0)]
Snakes on a Plane: [(Lisa : 3.5), (Gene : 3.5)]

To:

Movie Lisa Gene Mich
ael

Claud
ia

Mick Jack Toby

Lady in the
Water

2.5 3.0 2.5 3.0 3.0

Snakes on a
Plane

3.5 3.5 3.0 3.5 4.0 4.0 4.5

Just My Luck 3.0 1.5 3.0 2.0

Superman
Returns

3.5 5.0 3.5 4.0 3.0 5.0 4.0

You, Me and
Dupree

2.5 3.5 2.5 2.0 3.5 1.0

The Night
Listener

3.0 3.0 4.0 4.5 3.0 3.0

User Lady Snake
s

Luck Super
man

Dupre
e

Night

Lisa 2.5 3.5 3.0 3.5 2.5 3.0

Gene 3.0 3.5 1.5 5.0 3.5 3.0

Michael 2.5 3.0 3.5 4.0

Claudia 3.5 3.0 4.0 2.5 4.5

Mick 3.0 4.0 2.0 3.0 2.0 3.0

Jack 3.0 4.0 5.0 3.5 3.0

Toby 4.5 4.0 1.0

Finding matching products

• We can then use the same method as we previously used to
find similar users to find matching movies for a movie:

• Transposing the data set is however a rather slow operation if
the data set is large

User-based collaborative filtering

• To find recommendations for a user, the approach we have
used so far requires calculating similarity between a user and
all other users

• This approach is called user-based collaborative filtering
• This works for small data sets, but will be very ineffective for

large data sets
• Also, if there are many users there is most likely very little

overlap between most users
• There is another approach we can use:

Item-based collaborative filtering

• The other approach is called item-based collaborative filtering
• We can make an assumption that the comparison between

movies will not change as much as comparisons between
users

• We can therefore pre-calculate and store the top N matching
movies for each movie in a new data set

• This requires that we transpose the dataset so we can find top
matching movies for each movie

Recommending movies again

• We can then use the pre-generated dataset to find
recommended movies

• Now, similarity between users are not involved at all
• Instead we use the pre-calculated similarity score

between movies and generate a similar table:

Recommending movies, IB

Movie Rating
(Toby)

Sim
Night

WR Night Sim
Lady

WR
Lady

Sim
Luck

WR
Luck

Snakes 4.5 0.182 0.222 0.105

Superman 4.0 0.103 0.091 0.065

Dupree 1.0 0.148 0.4 0.182

• First, fill in similarity between movies using the pre-generated
matching movies table:

• The first row is similarity between
Snakes on a Plane and the other
three movies:

Recommending movies, IB

Movie Rating
(Toby)

Sim
Night

WR Night Sim
Lady

WR
Lady

Sim
Luck

WR
Luck

Snakes 4.5 0.182 0.818 0.222 0.999 0.105 0.474

Superman 4.0 0.103 0.412 0.091 0.363 0.065 0.258

Dupree 1.0 0.148 0.148 0.4 0.4 0.182 0.182

Σwr 1.378 1.764 0.914

Σsim 0.433 0.713 0.352

Σwr / Σsim 3.183 2.598 2.473

• Calculate sum of weighted ratings and similarities:

• The Night Listener is still the recommended movie for Toby

Comparison

• The results from User-Based and Item-Based Collaborative
Filtering differs slightly:

User-Based or Item-Based?

• Getting a list of recommendations is faster for item-based for
large datasets

• The drawback is that the similar items table must be generated
and updated regularly, which is a very slow operation

• Item-Based is usually more accurate on sparse datasets, i.e.
datasets with little overlap between users

• Our dataset is however dense; every user has rated nearly
every movie

Real-world data set

• The GroupLens project at University of Minnesota has
collected and generated several datasets for public use

• The dataset that is most interesting for us is MovieLens:
– https://grouplens.org/datasets/movielens/

• The dataset is generated from the movie
recommendation service movielens.org

• The dataset comes in two sizes, the full dataset with 27
million ratings or a smaller dataset with 100 000 ratings

https://grouplens.org/datasets/movielens/

MovieLens dataset

Dr. Johan Hagelbäck

johan.hagelback@lnu.se

http://aiguy.org

Recommendation Systems

