Clustering

Dr. Johan Hagelbäck

johan.hagelback@lnu.se

http://aiguy.org

Linnæus University

Discovering Groups

- Recommendation Systems is one way of, for example, finding users similar to yourself
- We will now look into a related method called *data clustering*
- It is used for discovering and visualizing groups of items, people, blog entries, ..., that are closely related
- We will take a look at two different algorithms: *hierarchical* and *k-means* clustering

The dataset

- First, we need a dataset to work with
- The dataset consists of 120 blogs
- The data for each blog is the number of times a particular word appear in the feed
- There are in total 706 pre-selected words
- The data is in a tab-separated text file
- A small subset of the data looks like:

The dataset

Blog/Word	"china"	"kids"	"music"	"yahoo"
Gothamist	0	3	3	0
GigaOM	6	0	0	2
Quick Online Tips	0	2	2	22

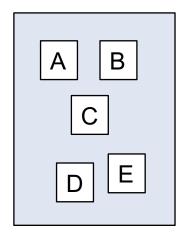
The basic idea

- If we can cluster blogs based on word frequencies, we might find groups of similar blogs
- It can be useful when searching, cataloging and discovering online blogs
- The dataset can be downloaded at the course web page
- It is also possible to generate a new data set using a blog feed parser tool

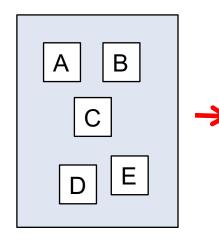
The dataset

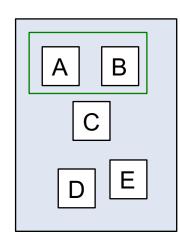
	A	В	C	D	E	F	G	H		J	K	L	M	N	0	P
1	Blog	china	kids	music	yahoo	want	wrong	service	tech	saying	lots	had	address	working	following	years d
2	The Superficial - Because You're Ugly	0	1	0	0	3	3	0	0	3	0	6	0	1	0	4
3	Wonkette	0	2	1	0	6	2	1	0	4	5	25	0	0	0	6
-4	Publishing 2.0	0	0	7	4	0	1	3	6	0	0	1	0	0	0	1
5	Eschaton	0	0				3			1	0	1	0	1	0	0
6	Blog Maverick	2	14	17	2	45	11	8	0	4	7	24	2	4	3	12
7	Mashable!	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0
8	we make money not art	0	1	1	0	6	0	0	1	0	1	21	3	20	4	6
9	GigaOM	6	0	0	2	1	0	3	1	0	0	1	0	0	1	1
10	Joho the Blog	0	0	1	4	0	0	1	0	0	0	4	1	0	0	1
11	Neil Gaiman's Journal	0	0	0	0	2	1	0	0	3	8	28	0	1	0	5
12	Signal vs. Noise	0	0	0	0	12	2	0	2	4	3	8	2	2	0	1
13	lifehack.org	0	0	0	0	2	1	0	0	0	2	0	0	1	1	1
14	Hot Air	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
15	Online Marketing Report	0	0	0	3	0	0	0	0	0	0	0	0	2	3	0
16	Kotaku	0	5	2	0	10	1	3	0	4	1	13	0	0	1	0
17	Talking Points Memo: by Joshua Micah Marshall	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0
18	John Battelle's Searchblog	0	0	0	3	1	0	1	0	0	0	1	1	0	0	0
19	43 Folders	0	0	0	0	1	0	0	0	1	1	0	0	0	0	1
20	Daily Kos	0	1	0	0	9	4	0	0	1	1	6	0	0	0	2
21	Deadspin	1	2	3	0	0	5	1	0	4	1	25	0	0	0	4
22	Go Fug Yourself	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0
23	O'Reilly Radar	7	0	3	4	6	0	7	1	1	0	1	1	4	1	2
24	Andrew Sullivan I The Daily Dish	0	0	0	0	0	1	2	0	1	0	1	1	0	0	1

- In HC, a tree hierarchy of groups are constructed by continuously merging the two most similar groups
- Each group starts as a single blog
- In each iteration, the distances to all other groups are calculated and the two closest ones are merged to form a new group
- This is repeated until we only have one large group



Groups	
А	
В	
С	
D	
E	

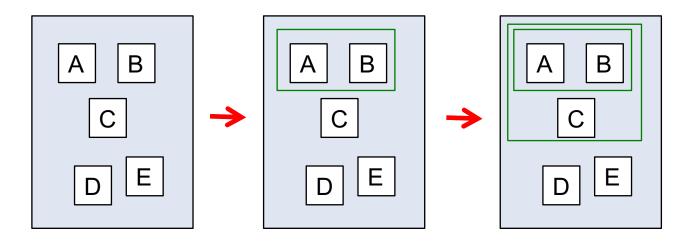




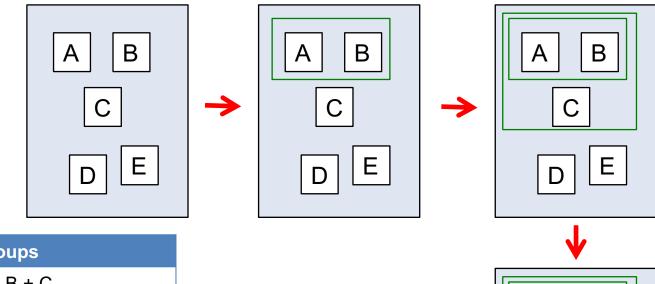
G	ro	ns

A	+	В	
С			

U	
D	
Е	



A + B + C
D
E



В

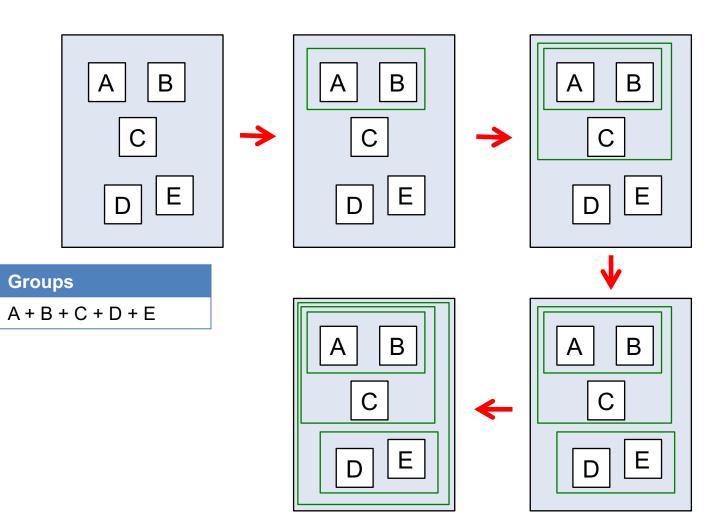
Е

С

D

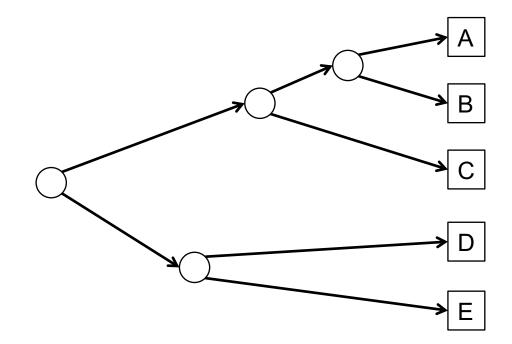
Α

Groups	
A + B + C	
D + E	



Dendrogram

• We can display the result in a graph called *dendrogram*, which displays the nodes arranged into their hierarchy:



Closeness

- Central to the algorithm is a measure of how close two blogs are
- In the previous lecture we defined two similarity measures: *Euclidean* and *Pearson*
- In the dataset, some blogs contain more words than other blogs since they have more or longer blog entries
- Euclidean is not very good in this case
- We will therefore focus on Pearson

Pearson distance

- The more similar two blogs are, the smaller the distance value between the blogs
- If two blogs match perfectly, Pearson returns 1.0
- If they don't match at all, Pearson returns -1.0
- The Pearson value must therefore be inverted
- The Pearson distance is calculated as:

Pearson distance

```
float pearson(Blog A, Blog B)
  //Init variables
  sumA=0, sumB=0, sumAsq=0, sumBsq=0, pSum=0
 //Number of words
 n = 706
  //Iterate over all words
  for (i = 0 \text{ to } n)
   cntA = A.word count(i) //word counts for each word in A
    cntB = B.word count(i) //word counts for each word in B
    sumA += cntA //sum of word counts for A
    sumB += cntB //sum of word counts for B
    sumAsg += cntA**2 //sum of squared word counts for A
    sumBsq += cntB**2 //sum of squared word counts for B
    pSum += cntA * cntB //product of word counts from A and B
  //Calculate Pearson
  num = pSum - (sumA * sumB / n)
  den = sqrt((sumAsq - sumA**2 / n) * (sumBsq - sumB**2 / n))
  //Return inverted Pearson score
  return 1.0 - num/den
```

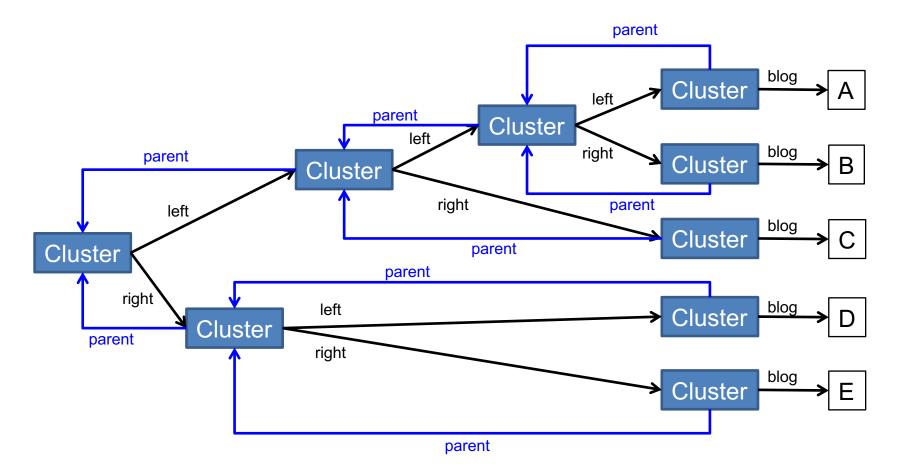
Tree data structure

- It is recommended to model the clusters as a tree
- Each node (called cluster) in the tree contains either a Blog (leaf node), or two branches to other nodes
- We will also save the distance measure between the two branches (or 0 if node is a leaf node with a Blog)
- ... and a reference to the parent node
- The data structure we will use looks like this:

Cluster

Cluster left; //null if leaf node Cluster right; //null if leaf node Blog blog; double distance; //0 if leaf node

The tree data structure



Merging

- Merging two clusters A and B is a bit tricky
- Do the following steps:

1	Create a new cluster P
2	Set P.left to A
3	Set P.right to B
4	Create a new blog bP for cluster P
5	Fill the blog by averaging word counts for each word
	from the blogs in A and B
6	Set A.parent to P
7	Set B.parent to P
8	Set the distance score to P

Merge algorithm

```
//Merge two clusters A and B
Cluster merge(Cluster A, Cluster B, double distance)
 //Number of words
 n = 706
 //Create new cluster
 Cluster P
 //Fill data
 P.left = A
 A.parent = P
 P.right = B
 B.parent = P
 //Merge blog data by averaging word counts for each word
 Blog nB
 for (i = 0 to n)
   double cntA = A.blog.word count(i)
   double cntB = B.blog.word count(i)
   //Average word count
   double cnt = (cntA + cntB) / 2
   //Set word count to new blog
   nB.set word count(i, cnt)
 //Set blog to new cluster
 P.blog = nB
 //Set distance
 P.distance = distance
 //Return new cluster
  return P
```

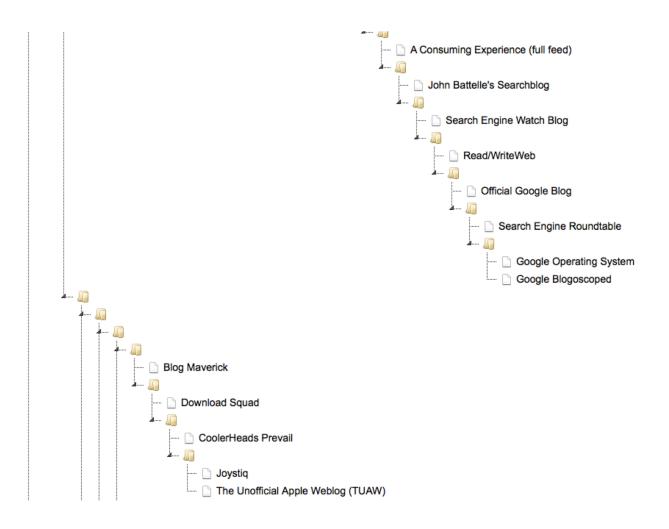
Hierarchy generation algorithm

- Start by generating one Cluster for each blog
- Then iteratively merge to clusters one at a time until only one cluster remains:

Hierarchy generation algorithm

```
//Iterate as long as there are more than one Cluster in the
//Clusters list
void iterate()
 //Find two closest nodes
 double closest = Double.MAX VALUE
 Cluster A
 Cluster B
 foreach (Cluster cA : clusters)
    foreach (Cluster cB : clusters)
      double distance = pearson(cA.blog, cB.blog)
      if (distance < closest && cA != cB)</pre>
        //New set of closest nodes found
        closest = distance
        A = cA
        B = CB
  //Merge the two clusters
  Cluster nC = merge(A, B, closest)
  //Add new cluster
  clusters.add(nC)
  //Remove old clusters
  clusters.remove(A)
  clusters.remove(B)
```

Displaying the result



Performance issues

- Calculating the distance score between two blogs of 706 words is rather time consuming
- And the algorithm iterates several times, 98 in our example data set
- In total 161700 similarity measures are calculated
- It might take a while to generate and display the tree...
- Can you find any performance improvements?

K-means Clustering

K-means Clustering

- Hierarchical Clustering has some drawbacks:
 - Data is not broken down into distinct groups without additional computation
 - The algorithm is very slow
- An alternative is to use *K*-means clustering
- It is quite different from HC because we tell the algorithm in advance how many clusters we want
- The algorithm will then determine the size of each cluster based on the data

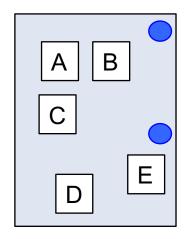
Centroid

- Central to the algorithm is *centroids*
- A centroid is a point in n-dimensional space that represents the center of a cluster
- Each centroid is placed at a random point at the beginning of the algorithm
- This means that for the blog data example we have 706 words
- Each centroid must then have 706 randomly generated counts ranging from min to max for that specific word
- For example the word "china" occurs between 0 and 11 times in the blogs, so the random count must be between 0 and 11

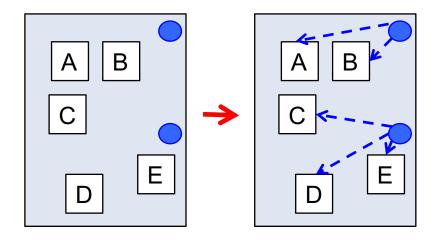
K-means clustering

- The algorithm works as follows:
 - Decide how many clusters that are needed, k
 - Randomly place k centroids
 - Assign every Blog to the closest centroid
 - After all blogs have been assigned, each centroid is moved to the average location of all blogs assigned to the cluster
 - Repeat for *i* iterations:
 - Clear assignments
 - Assign every Blog to the closest centroid
 - Move centroid to average of cluster

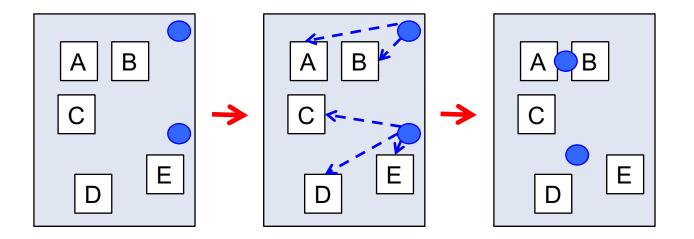
Randomly place 2 centroids



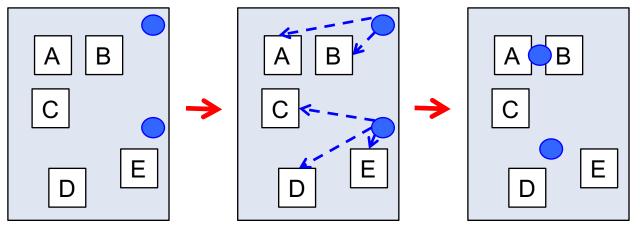
Assign blogs to the closest centroid

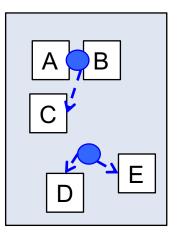


Move centroids to center of cluster

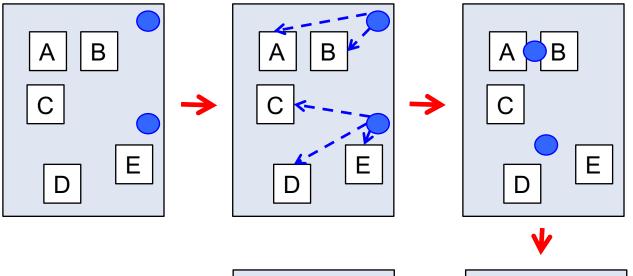


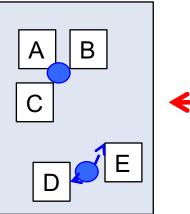
Re-assign blogs to closest centroids

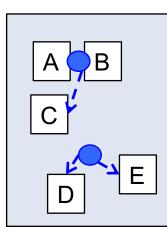




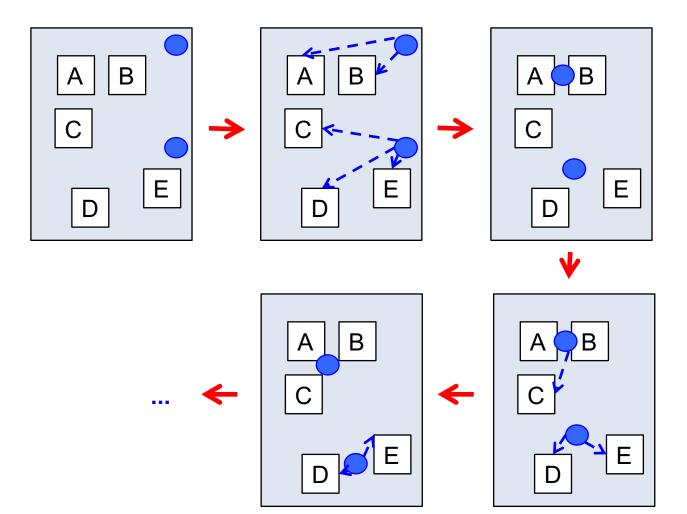
Move centroids to center of cluster







Continue iterating until we reach a stable solution



The algorithm

```
//Number of words
n = 706
//Generate K random centroids
centroids = List()
for (c = 0 to K)
  Centroid c
  for (i = 0 to n)
    c.set word count(i, random(min[i], max[i]))
//Iteration loop
for (i = 0 to MAX ITERATIONS)
  //Clear assignments for all centroids
  centroids.clearAssignments()
  //Assign each blog to closest centroid
  foreach (Blog b : blogs)
    double distance = Double.MAX VALUE
    Centroid best
    //Find closest centroid
    for (Centroid c : centroids)
      double cDist = pearson(c, b)
      if (cDist < distance)</pre>
        best = c
        distance = cDist
    //Assign blog to centroid
    best.assign(b)
```

The algorithm

```
//Re-calculate center for each centroid
foreach (Centroid c : centroids)
    //Find average count for each word
    for (i = 0 to n)
        double avg = 0
        //Iterate over all blogs assigned to this centroid
        foreach (Blog b : c.assignments)
            avg += b.word_count(i)
            avg /= c.assignments.length()
            //Update word count for the centroid
            c.set_word_count(i, avg)
//End of iteration loop - all done
```

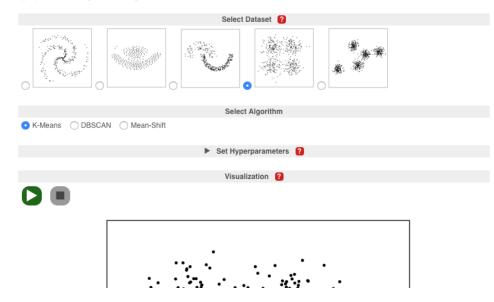
When is it finished?

- The algorithm must stop the iteration at some point
- To do this you:
 - Define a maximum number of iterations, for example 20
 - Always stop if the previous assignment is identical to the new assignment

K-means clustering

Visualizer

This is a visualization of how different clustering algorithms learn clusters for some different datasets. You can also experiment with how hyperparameter settings affect the algorithms.



http://aiguy.org/webclust

About

Hierarchical vs. K-means

- K-means requires very few iterations compared to Hierarchical, and is significantly faster
- K-means is initialized with randomly placed centroids, therefore the result can differ between executions
- Hierarchical is always consistent

K-means, two runs

Clustering

Dr. Johan Hagelbäck

johan.hagelback@lnu.se

http://aiguy.org

Linnæus University

