
Dr. Johan Hagelbäck

johan.hagelback@lnu.se

http://aiguy.org

Clustering

Discovering Groups

• Recommendation Systems is one way of, for
example, finding users similar to yourself

• We will now look into a related method called data
clustering

• It is used for discovering and visualizing groups of
items, people, blog entries, …, that are closely
related

• We will take a look at two different algorithms:
hierarchical and k-means clustering

The dataset

• First, we need a dataset to work with
• The dataset consists of 120 blogs
• The data for each blog is the number of times a

particular word appear in the feed
• There are in total 706 pre-selected words
• The data is in a tab-separated text file
• A small subset of the data looks like:

The dataset
Blog/Word ”china” ”kids” ”music” ”yahoo”

Gothamist 0 3 3 0

GigaOM 6 0 0 2

Quick Online Tips 0 2 2 22

The basic idea

• If we can cluster blogs based on word frequencies,
we might find groups of similar blogs

• It can be useful when searching, cataloging and
discovering online blogs

• The dataset can be downloaded at the course web
page

• It is also possible to generate a new data set using a
blog feed parser tool

The dataset

Hierarchical Clustering

Hierarchical Clustering

• In HC, a tree hierarchy of groups are constructed by
continuously merging the two most similar groups

• Each group starts as a single blog
• In each iteration, the distances to all other groups

are calculated and the two closest ones are merged
to form a new group

• This is repeated until we only have one large group

Hierarchical Clustering

A B

C

D E

Groups
A

B

C

D

E

Hierarchical Clustering

A B

C

D E

A B

C

D E

Groups
A + B

C

D

E

Hierarchical Clustering

A B

C

D E

A B

C

D E

A B

C

D E

Groups
A + B + C

D

E

Hierarchical Clustering

A B

C

D E

A B

C

D E

A B

C

D E

A B

C

D E

Groups
A + B + C

D + E

Hierarchical Clustering

A B

C

D E

A B

C

D E

A B

C

D E

A B

C

D E

A B

C

D E

Groups
A + B + C + D + E

Dendrogram

• We can display the result in a graph called dendrogram, which
displays the nodes arranged into their hierarchy:

A

B

C

D

E

Closeness

• Central to the algorithm is a measure of how close two blogs
are

• In the previous lecture we defined two similarity measures:
Euclidean and Pearson

• In the dataset, some blogs contain more words than other
blogs since they have more or longer blog entries

• Euclidean is not very good in this case
• We will therefore focus on Pearson

Pearson distance

• The more similar two blogs are, the smaller the distance value
between the blogs

• If two blogs match perfectly, Pearson returns 1.0
• If they don’t match at all, Pearson returns -1.0
• The Pearson value must therefore be inverted

• The Pearson distance is calculated as:

Pearson distance
float pearson(Blog A, Blog B)

//Init variables
sumA=0, sumB=0, sumAsq=0, sumBsq=0, pSum=0
//Number of words
n = 706
//Iterate over all words
for (i = 0 to n)

cntA = A.word_count(i) //word counts for each word in A
cntB = B.word_count(i) //word counts for each word in B
sumA += cntA //sum of word counts for A
sumB += cntB //sum of word counts for B
sumAsq += cntA**2 //sum of squared word counts for A
sumBsq += cntB**2 //sum of squared word counts for B
pSum += cntA * cntB //product of word counts from A and B

//Calculate Pearson
num = pSum – (sumA * sumB / n)
den = sqrt((sumAsq – sumA**2 / n) * (sumBsq – sumB**2 / n))
//Return inverted Pearson score
return 1.0 - num/den

Tree data structure

• It is recommended to model the clusters as a tree
• Each node (called cluster) in the tree contains either a Blog

(leaf node), or two branches to other nodes
• We will also save the distance measure between the two

branches (or 0 if node is a leaf node with a Blog)
• … and a reference to the parent node
• The data structure we will use looks like this:

Cluster

Cluster left; //null if leaf node
Cluster right; //null if leaf node
Blog blog;
double distance; //0 if leaf node

The tree data structure

ACluster

BCluster

CCluster

DCluster

ECluster

blog

blog

blog

blog

blog

Cluster
left

right
Cluster

left

right

Cluster
left

right

Cluster

left

right

parent

parent

parent

parent
parent

parent

parent

parent

Merging

• Merging two clusters A and B is a bit tricky
• Do the following steps:

1
2
3
4
5

6
7
8

Create a new cluster P
Set P.left to A
Set P.right to B
Create a new blog bP for cluster P
Fill the blog by averaging word counts for each word
from the blogs in A and B
Set A.parent to P
Set B.parent to P
Set the distance score to P

Merge algorithm
//Merge two clusters A and B
Cluster merge(Cluster A, Cluster B, double distance)

//Number of words
n = 706
//Create new cluster
Cluster P
//Fill data
P.left = A
A.parent = P
P.right = B
B.parent = P

//Merge blog data by averaging word counts for each word
Blog nB
for (i = 0 to n)

double cntA = A.blog.word_count(i)
double cntB = B.blog.word_count(i)
//Average word count
double cnt = (cntA + cntB) / 2
//Set word count to new blog
nB.set_word_count(i, cnt)

//Set blog to new cluster
P.blog = nB
//Set distance
P.distance = distance

//Return new cluster
return P

Hierarchy generation algorithm

• Start by generating one Cluster for each blog
• Then iteratively merge to clusters one at a time until

only one cluster remains:

Hierarchy generation algorithm
//Iterate as long as there are more than one Cluster in the
//Clusters list
void iterate()

//Find two closest nodes
double closest = Double.MAX_VALUE
Cluster A
Cluster B
foreach (Cluster cA : clusters)

foreach (Cluster cB : clusters)
double distance = pearson(cA.blog, cB.blog)
if (distance < closest && cA != cB)

//New set of closest nodes found
closest = distance
A = cA
B = cB

//Merge the two clusters
Cluster nC = merge(A, B, closest)
//Add new cluster
clusters.add(nC)
//Remove old clusters
clusters.remove(A)
clusters.remove(B)

Displaying the result

Performance issues

• Calculating the distance score between two blogs of 706 words
is rather time consuming

• And the algorithm iterates several times, 98 in our example
data set

• In total 161700 similarity measures are calculated

• It might take a while to generate and display the tree…
• Can you find any performance improvements?

K-means Clustering

K-means Clustering

• Hierarchical Clustering has some drawbacks:
– Data is not broken down into distinct groups without

additional computation
– The algorithm is very slow

• An alternative is to use K-means clustering
• It is quite different from HC because we tell the

algorithm in advance how many clusters we want
• The algorithm will then determine the size of each

cluster based on the data

Centroid

• Central to the algorithm is centroids
• A centroid is a point in n-dimensional space that represents the

center of a cluster
• Each centroid is placed at a random point at the beginning of

the algorithm
• This means that for the blog data example we have 706 words
• Each centroid must then have 706 randomly generated counts

ranging from min to max for that specific word
• For example the word “china” occurs between 0 and 11 times

in the blogs, so the random count must be between 0 and 11

K-means clustering

• The algorithm works as follows:
– Decide how many clusters that are needed, k
– Randomly place k centroids
– Assign every Blog to the closest centroid
– After all blogs have been assigned, each centroid is moved

to the average location of all blogs assigned to the cluster
– Repeat for i iterations:

• Clear assignments
• Assign every Blog to the closest centroid
• Move centroid to average of cluster

Randomly place 2 centroids

A B

C

D
E

Assign blogs to the closest centroid

A B

C

D
E

A B

C

D
E

Move centroids to center of cluster

A B

C

D
E

A B

C

D
E

A B

C

D
E

Re-assign blogs to closest centroids

A B

C

D
E

A B

C

D
E

A B

C

D
E

A B

C

D
E

Move centroids to center of cluster

A B

C

D
E

A B

C

D
E

A B

C

D
E

A B

C

D
E

A B

C

D
E

Continue iterating until we reach a stable solution

A B

C

D
E

A B

C

D
E

A B

C

D
E

A B

C

D
E

A B

C

D
E

...

The algorithm
//Number of words
n = 706
//Generate K random centroids
centroids = List()
for (c = 0 to K)

Centroid c
for (i = 0 to n)

c.set_word_count(i, random(min[i], max[i]))

//Iteration loop
for (i = 0 to MAX_ITERATIONS)

//Clear assignments for all centroids
centroids.clearAssignments()

//Assign each blog to closest centroid
foreach (Blog b : blogs)

double distance = Double.MAX_VALUE
Centroid best
//Find closest centroid
for (Centroid c : centroids)

double cDist = pearson(c, b)
if (cDist < distance)

best = c
distance = cDist

//Assign blog to centroid
best.assign(b)

The algorithm
//Re-calculate center for each centroid
foreach (Centroid c : centroids)

//Find average count for each word
for (i = 0 to n)

double avg = 0
//Iterate over all blogs assigned to this centroid
foreach (Blog b : c.assignments)

avg += b.word_count(i)
avg /= c.assignments.length()

//Update word count for the centroid
c.set_word_count(i, avg)

//End of iteration loop – all done

When is it finished?

• The algorithm must stop the iteration at some point
• To do this you:

– Define a maximum number of iterations, for example 20
– Always stop if the previous assignment is identical to the

new assignment

K-means clustering

http://aiguy.org/webclust

Hierarchical vs. K-means

• K-means requires very few iterations compared to
Hierarchical, and is significantly faster

• K-means is initialized with randomly placed
centroids, therefore the result can differ between
executions

• Hierarchical is always consistent

K-means, two runs

Dr. Johan Hagelbäck

johan.hagelback@lnu.se

http://aiguy.org

Clustering

