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Naïve Bayes algorithm



Algorithms for classification

• There are several algorithms that can be for classification 
tasks:

– Artificial Neural Networks
– Support Vector Machines
– k-Nearest Neighbor
– Decision Trees
– … and many more

• We will focus on the basic but common algorithm Naïve Bayes
• It has several benefits such as high speed, and is often very 

effective for text classification



Bayes’ theorem

• First, we need to learn about Bayes’ theorem
• It describes the probability of an event, based on prior 

knowledge of conditions that might be related to the event
• Bayes’ theorem is stated using the following formula:

• … where P(A|B) shall be interpreted as 
”probability that A occurs given B”

• It is best explained using an example:



Example

• We are interested in knowing if 
”a stiff neck is a good sign of being a good FIFA player?”

• To answer this using Bayes’ theorem we need to know 
the prior probabilities:
– 50% of the good FIFA players have a stiff neck:

P(stiff | good) = 0.5
– One in 50000 players is good at FIFA:

P(good) = 1/50000
– One in 20 players suffer from a stiff neck:

P(stiff) = 1/20



Example

• We can now use the prior probabilities:
– P(stiff | good) = 0.5    P(good) = 1/50000    P(stiff) = 1/20

• … to calculate the probability of being a good FIFA player 
if you have a stiff neck:



Example

• Given the prior probabilities:

– P(stiff | good) = 0.5    P(good) = 1/50000    P(stiff) = 1/20

• … we can use Bayes’ theorem to say that the probability 

that a player is good at FIFA if he has a stiff neck is 

0.0002, or one in 5000 players

• So even if 50% of the good FIFA players have a stiff 

neck, it is not a good indicator of being good or bad at 

FIFA



Naïve Bayes

• Bayes’ theorem only takes one attribute into consideration (stiff neck) 
when calculating the probability of belonging to a specific category 
(good FIFA player)

• In most real-world applications we have more than one attribute:
– stiff neck
– good gamepad
– high resolution TV with a large screen
– …

• We need a way of combining several inputs to get a probability of 
belonging to a specific category

• This is handled by the Naïve Bayes classifier



Naïve Bayes

• The classifier is called naïve because it assumes that the 
attributes are independent of each other

• It means that the probability of one attribute belonging to a 
specific category is completely unrelated to the probability of 
other attributes belonging to that category

• There are no relations between attributes!
• This is actually a false assumption for most tasks
• Example: ”money” is a better spam indicator if in combination 

with ”casino” than with ”programming”



Naïve Bayes

• The independence between attributes means that the actual 
probability calculated by the Naïve Bayes classifier is 
inaccurate

• You cannot say that the resulting probability is the actual
probability that an example belongs to a category

• We can however compare the results of the example belonging 
to different categories, and see which category has the highest 
probability

• This works surprisingly well for many real-world classification 
problems



Multinomial Naïve Bayes

• We will first take a look at the Multinomial Naïve Bayes
algorithm

• It works best when the inputs are categorical or text

• Let’s start with an example:



Example dataset
Game pad? Stiff neck? Player skill
Great Yes Good
Average Yes Good
Junk Yes Good
Average No Good
Junk No Bad
Average No Bad
Great Yes Bad
Average No Bad
Average No Bad



Frequency table

• First step is to generate a frequency table:

Game Pad? Stiff neck? Player skill?

Good Bad Good Bad Good Bad

Great 1 1 Yes 3 1 4 5

Average 2 3 No 1 4

Junk 1 1



Prior probabilities

• We continue filling the table with prior probabilities:

Game Pad? Stiff neck? Player skill?

Good Bad Good Bad Good Bad

Great 1 1 Yes 3 1 4 5

Average 2 3 No 1 4

Junk 1 1

P(Great | x) 1/4 1/5 P(Yes | x) 3/4 1/5 4/9 5/9

P(Avg | x) 2/4 3/5 P(No | x) 1/4 4/5

P(Junk | x) 1/4 1/5



Classification

• The table is all we need for classification
• Now we can answer questions like:

– A player has an average game pad and a stiff neck. Is he a good 
or bad player?

• We have two possible categories, Good or Bad player
• Let’s calculate the probabilities of the above mentioned player 

belonging to the two categories:



Classification

• Classify the player:
– {game pad = average, stiff neck = yes}

• Probability that the player is Good:

• Probability that the player is Bad:

• Good has higher probability than Bad, so we classify the 
player as Good!

P(Good) * P(average | Good) * P(yes | Good) = 4/9 * 2/4 * 3/4 = 0.1667

P(Bad) * P(average | Bad) * P(yes | Bad) = 5/9 * 3/5 * 1/5 = 0.0667 



Another example

• Classify the player:
– {game pad = great, stiff neck = no}

• Probability that the player is Good:

• Probability that the player is Bad:

• Bad has higher probability than Good, so we classify the 
player as Bad!

P(Good) * P(great | Good) * P(no | Good) = 4/9 * 1/4 * 1/4 = 0.0278

P(Bad) * P(great | Bad) * P(no | Bad) = 5/9 * 1/5 * 4/5 = 0.0889 



Threshold

• In many applications it is better to return a ”don’t know” than a 
misclassified example

• For example in spam filtering, it is often desirable to avoid having non-
spam emails end up in the spam folder than to catch every single 
spam message

• This can be solved by using a threshold
• A threshold of 3 means that the probability for the highest category 

must be at least 3 times higher than the probability of the other 
category, otherwise the classifier is unsure

• In our examples we used a threshold of 1, meaning that we always 
classify an example as the highest category regardless of the 
difference in probabilities



The examples using threshold
{game pad = average, stiff neck = yes}

P(Good) P(Bad) Ratio Threshold Classified as
0.1667 0.0667 2.499 1 Good
0.1667 0.0667 2.499 3 Don’t know

{game pad = great, stiff neck = no}
P(Good) P(Bad) Ratio Threshold Classified as
0.0278 0.0889 3.198 1 Bad
0.0278 0.0889 3.198 3 Bad



Text classification

• In the examples we have seen so far we have had two nominal 
attributes:
– Game pad: {great, average, junk}
– Stiff neck: {yes, no}

• In text classification, we have to classify texts of different length
• To do this we first have to convert the text contents of each 

document to a bag-of-words (number of times each unique 
word is found in a text)

• Then we have to count the frequency and calculate the 
probability for each word belonging to each category

• Let’s look at an example:



Example dataset

Text Spam?
Buy cheap Rolex? Yes

You want cheap Vicodin? Yes

Can you buy milk? No

Want candy tonight? No

Gym tonight? No

• The unique words are (special characters removed):

• buy, cheap, rolex, you, want, vicodin, can, milk, candy, tonight, gym

• First step is to create a frequency matrix



Frequency table
Spam?

Yes No Yes No Yes No

buy 1 1 can 0 1 2 3

cheap 2 0 milk 0 1

rolex 1 0 candy 0 1

you 1 1 tonight 0 2

want 1 1 gym 0 1

vicodin 1 0

Let’s continue with the probabilities…



Prior probabilities
Spam?

Yes No Yes No Yes No

buy 1 1 can 0 1 2 3

cheap 2 0 milk 0 1

rolex 1 0 candy 0 1

you 1 1 tonight 0 2

want 1 1 gym 0 1

vicodin 1 0 2/5 3/5

P(buy | x) 1/2 1/3 P(can | x) 0/2 1/3

P(cheap | x) 2/2 0/3 P(milk | x) 0/2 1/3

P(rolex | x) 1/2 0/3 P(candy | x) 0/2 1/3

P(you | x) 1/2 1/3 P(tonight | x) 0/2 2/3

P(want | x) 1/2 1/3 P(gym | x) 0/2 1/3

P(vicodin | x) 1/2 0/3



Classification

• Now you want to classify the text 
”buy cheap candy”

• As in the previous examples, we calculate the probability for 
being spam or not being spam:

• Here we can see a problem: if a word has never showed up in 
a category, we multiply with a 0 and the result will always be 
0…

• To solve this we can apply Laplace correction:

P(yes) * P(buy | yes) * P(cheap | yes) * P(candy | yes) = 2/5 * 1/2 * 2/2 * 0/2 = 0



Laplace correction

• In Laplace correction we always add some constant value to 
each probability to avoid 0 probabilities

• If we use 1/3 as Laplace correction the probability for being 
spam looks like: 

• And for not being spam:

• This message is classified as spam!

P(yes) * P(buy | yes) * P(cheap | yes) * P(candy | yes) = 
= 2/5 * (1/2+1/3) * (2/2+1/3) * (0/2+1/3) = 
= 0.4 * 0.833 * 1.333 *  0.333 = 2.9

P(no) * P(buy | no) * P(cheap | no) * P(candy | no) = 
= 3/5 * (1/3+1/3) * (0/3+1/3) * (1/3+1/3) = 
= 0.6 * 0.667 * 0.333 * 0.667 = 0.089



Spam or not?

• The text ”buy cheap candy” was clearly classified as spam
• Is this correct?
• The word that is most prominent in the result is ”cheap”, which 

exists in 2 of 2 spam and 0 of 3 non-spam messages
• If ”cheap” is not a good indicator for spam, we need more 

training data where cheap appears in non-spam messages
• We need quite large amounts of data for text classification to 

be accurate



Other variants of Naïve Bayes

• The approach described here is called Multinomial Naïve Bayes
• There are a number of other variants of Naïve Bayes, mainly 

Gaussian and Bernoulli
• In Bernoulli, we don’t count the actual frequency of an attribute in a 

category
• Instead we use 1 if the attribute appears in any document belonging to 

the category, and 0 otherwise
• In Gaussian, we assume that attributes are numeric and follow a 

normal distribution
• It is used when inputs are numerical
• Let’s take a look at how it works:



Example: reduced Iris dataset
Petal Length Petal Width Class

1.4 0.2 Iris-setosa

1.3 0.2 Iris-setosa

1.5 0.2 Iris-setosa

1.4 0.2 Iris-setosa

1.7 0.4 Iris-setosa

1.4 0.3 Iris-setosa

3.7 1.0 Iris-versicolor

3.9 1.2 Iris-versicolor

5.1 1.6 Iris-versicolor

4.5 1.5 Iris-versicolor

4.5 1.6 Iris-versicolor

4.7 1.5 Iris-versicolor



Training

• First, we divide the dataset into each category
• Then we calculate the mean value of each attribute for each 

category:

• And the standard deviation (how much each value differs from 
the mean) of each attribute for each category:



Training

Petal Length Petal Width

1.4 0.2

1.3 0.2

1.5 0.2

1.4 0.2

1.7 0.4

1.4 0.3

1.45 0.25

0.14 0.08

Iris-setosa
Petal Length Petal Width

3.7 1.0

3.9 1.2

5.1 1.6

4.5 1.5

4.5 1.6

4.7 1.5

4.40 1.40

0.52 0.24

Iris-versicolor

Mean

Stdev

Mean

Stdev



Classification

• To classify new examples, we need to calculate the 
probabilities of the input attributes belonging to each category 
using the Gaussian Probability Density Function (PDF):

• Next, we multiply the probabilities for all attributes for each 
category

• Each probability is then normalized by dividing with the sum of 
the probabilities for all categories

• We classify the example as the category with the highest 
probability

pdf(xi, meani, stdi) = (1 / (sqrt(2 * PI) * stdi)) * e^(-((xi - meani)^2)/(2 * stdi^2)))

Note! The Gaussian (normal) distribution
is available in many API’s, Excel etc.



Classification

Petal 
Length

Petal Width

Mean 1.45 0.25

Stdev 0.14 0.08

x 1.6 0.8

PDF 1.601 1.970e-09

P 3.154e-09

Pnorm 0.102

Iris-setosa Iris-versicolor

The probability of the example belonging to Iris-versicolor is
0.898, so we classify this flower as an Iris-versicolor

Petal 
Length

Petal Width

Mean 4.40 1.40

Stdev 0.52 0.24

x 1.6 0.8

PDF 3.424e-07 0.081

P 2.776e-08

Pnorm 0.898



Log probabilities

• The probability for each attribute belonging to a category is 
typically very small

• Multiplying lots of small values can lead to numerical underflow
• This is fixed by combining the log of the probabilities together
• This is done by:

1. Transform attributes x and y as ln(x) and ln(y)
- natural logarithm, often called Math.log(x) or Math.log(x,Math.E)

2. Perform the log equivalent to multiplication, which is addition:
ln(xy) = ln(x) + ln(y)

3. Transform the equivalent product ln(xy) back into the original form:
eln(xy)

- often called Math.exp(value)



Log probabilities

Petal 
Length

Petal Width

Mean 1.45 0.25

Stdev 0.14 0.08

x 1.6 0.8

PDF 1.601 1.970e-09

ln(PDF) 0.471 -20.045

∑ln(PDF) -19.575

e∑ln(PDF) 3.154e-09

Pnorm 0.102

Iris-setosa Iris-versicolor
Petal 
Length

Petal Width

Mean 4.40 1.40

Stdev 0.52 0.24

x 1.6 0.8

PDF 3.424e-07 0.081

ln(PDF) -14.887 -2.512

∑ln(PDF) -17.400

e∑ln(PDF) 2.776e-08

Pnorm 0.898

Same result, but we avoid possible numerical underflow



Summary

• Despite its simplicity, Naïve Bayes is often effective for 
text classification and numerical datasets that are not too 
complex

• Since it is very fast, you can use it as a baseline to 
compare performance of other, more complex algorithms



Test it on some datasets
Naïve Bayes Random Forest



Test it on some datasets
Naïve Bayes Random Forest



Dr. Johan Hagelbäck

johan.hagelback@lnu.se

http://aiguy.org

Naïve Bayes algorithm


