Search Engines

Dr. Johan Hagelback

- johan.hagelback@Inu.se

>
Qg http://aiguy.org

Linnaeus University P

Search Engines

« This lecture is about full-text search engines, like Google and
Microsoft Bing

« They allow people to search a large number of documents for a
word or set of words, and rank the results based on how
relevant documents are to the search query

* Improving search engines is a very important area in computer
science, and companies like Google, Microsoft and Yahoo
have spent huge amounts of money and resources in it

« (Google started as an academic project describing the
PageRank algorithm for improving result ranking

Linnaeus University P

Search Engines

« Searching and Ranking is a huge area that has been around
for a very long time, and we can only cover some key concepts
here

« We will only use a relatively small data set consisting of the
Wikipedia articles
— 250 articles about video games and 400 about programming

« Search engines for huge amounts of data like the Internet have
many additional problems (for example storage) that we will not
cover here

Linnaeus University P

The data set

« A search engine needs a set of documents that the
user can search in

« Search engines generate this set by using a web
crawler

« The set can also be a collection of business

documents in a company, which employees can
search in

Linnaesus University

Indexing a document

 Once we have retrieved the contents of a document
It must be indexed

« This involves creating a list of all words that appear
in the document, and the location of each word

« We can then merge the word lists for all documents
In a large table

* In case of HTML files, we must strip the file contents
from all code and create a bag-of-words
representation

Linnaeus University P

Indexing

« The beginning of the index for the Action _game Wikipedia
page will then look like:

action game part of a series onaction games subgenres actionadventure game
action roleplaying game open world stealth game survival game ...

* This representation has quite high storage requirements

« An optimization is to give each word a unique value, for
example using hash codes, and store a list of integers instead

* In this case we must also store a table linking words to hash
values

Linnaesus University

Searching

« Searching for all documents that match a search query is
straightforward once we have an index

« |If we search for a single word, the system returns a list
containing all documents that has the word in them

* |If we search for multiple words, the system returns a list of
documents that has any of the words in them
— Or perhaps only documents that have all words in them

— It depends on the purpose of the search engine. How
inclusive/exclusive shall the system be?

Linnaesus University

Ranking

« The interesting and complex problem is how we can sort the
result list of matching documents based on how relevant each
document is to the search query

« To do this we need to generate a numeric score for each
document’s relevance

« This score is typically a combination of several metrics

 There are lots of different metrics that can be used, and we will
take a look at some of them in this lecture

* A metric can also typically be tweaked to hopefully work better
for a specific search engine

Linnaeus University P

Search Engine basics

« The first step is to build the basic structure of our search
engine

* First we need to generate the index for all Wikipedia
pages

* We can store this in for example a SQL database or, for
smaller sets, in the main memory

* In our example we will generate the index when starting
the system and store it in the main memory

« The word lists will be stored as integer values, so we
need a mapping from word to values

Linnaesus University

Search Engine structure

PageDB Page
HashMap<String, Integer> wordTold; String url;
List<Page> pages; List<Integer> words;

Linnaeus University

From word to id

« We will have an integer counter that is increased by 1 every
time we have to add a unique word

* Instead of storing this counter, we can use the size of the hash
map as counter:

//Get Id for a word
int getIdForWord(String word)
if (wordToId.containsKey(word))
//Word found in hashmap
return wordToId.get (word)
else
//Add missing word to hashmap
int id = wordToId.size()
wordToId.put(word, id)
return id

Linnaeus University P

Generate the word list

* To generate the word list we read the bag-of-words
data files in the Wikipedia data set zip file

« Create one Page object for each file in the
data/Words/Games and data/Words/Programming
folders

« The Page object shall contain:

— The URL to the page
— The words in the page

Linnaeus University

Searching

« When searching for a query, we convert the search

query to a sequence of word id values using the
getldForWord(String) method

« We then return all documents that has any of the
word id values in their words /ist

 Now we have a search result, next step is to sort it!

Linnaesus University

Order by content

Linnaesus University

Content-Based Ranking

* The first approach we will use is Content-Based ranking

* |tis metrics that sort the search results based on the
contents of each page

 We will look at three different metrics:
— Word frequency
— Document location
— Word distance

« Earlier search engines often only used Content-Based
ranking, and could give useable results

Linnaesus University

Basic query structure

« The basic query structure code shall work like this:
— Create an empty list where we place the results

— For each page:
e Calculate the metric value for each of the metrics used

— Normalize the metric values so all metrics are between 0
and 1

— Calculate a final score that is a weighted sum of all
normalized metric values

* The code can look something like this:

Linnaesus University

Query algorithm

void query(String query)
result = new List()
Score scores

//Calculate score for each page in the pages database
for (i = 0 to pagedb.noPages())
Page p = pagedb.get (i)
scores.content[i] = getFrequencyScore(p, dquery)
scores.location[i] = getLocationScore(p, query)

//Normalize scores
normalize(scores.content, false)
normalize(scores.location, true)

//Generate result list
for (i = 0 to pagedb.noPages())
Page p = pagedb.get (i)
//0nly include results where the word appears at least once
for (scores.content[i] > 0)
//Calculate sum of weighted scores
double score = 1.0 * scores.content[i] + 0.5 *
scores.location[i]
result.add(Score(p, score))

//Sort result list with highest score first
sort(result)

//Return result list
return result

AND / OR

« The query algorithm include all pages where any search
query word appears at least once on the page

« This is equivalent to:

super OR mario

« Another option is to include all pages where all search
query words must appear at least once on the page

« This is equivalent to:

super AND mario

Linnaesus University

Normalization

 We need all metric values to have a score between
0 and 1, where 0 is really bad and 1 is really good

« The problem is that some metric functions give low
values for good matches, and others high values for
good matches

« We need a universal function that converts the
metric value to a score between 0 and 1, regardless
of if high values are good or bad

« The code for doing this can look like this:

Linnaeus University P

Normalization algorithm

void normalize (double[] scores, bool smallIsBetter)
if (smallIsBetter)
//Smaller values shall be inverted to higher values
//and scaled between 0 and 1
//Find min value in the array
double min val = Min(scores)
//Divide the min value by the score
//(and avoid division by zero)
for (i = 0 to scores.length())
scores[i] = min val / Max(scores[i], 0.00001)
else
//Higher values shall be scaled between 0 and 1
//Find max value in the array
double max val = Max(scores)
//To avoid division by zero
max val = Max(max val, 0.00001)
//When we have a max value, divide all scores by it
for (i = 0 to scores.length())
scores[i] = scores[i] / max

Linnaeus University

Word Frequency metric

* This metric scores a page based on how many times each
word in the search query appears on the page:

void word freq(Page p, String query)
//Split search query to get each word
String[] gws = query.split(” ")
double score = 0
//Iterate over each word in the search query
foreach (String g : gws)
//Iterate over all words in the page
foreach (String word : p.words())
//Increase score by one if the page word matches
//the query word
if (word == q)
score += 1
//Return the score
return score

Higher scores are better!

Linnaeus University

Document Location metric

« Document location means the location of the words
In the search query on the page

It builds on the idea that if a word is relevant for the
page, it appears close to the top of that page

Linnaesus University

Document Location metric

void document loc(Page p, String query)
//Split search query to get each word
String[] gws = query.split(” ")
double score = 0
//Iterate over each word in the search query
foreach (String q : qws)
//Iterate over all words in the page
boolean found = false
for (i = 0 to p.words().length())
String word = p.words().get(i)
//Score is the index of the first occurence of the
//word + 1 (to avoid zero scores)
if (word == q)
score += 1 + 1
//Stop once the word has been found
found = true
break
//If the word is not found on the page, increase
//the score by a high value
if (!found)
score += 100000
//Return the score
return score

. . . Now, lower scores are better!
Linnaeus University

Word Distance metric

 Word Distance is based on the idea that queries
using multiple words often find results more relevant
If the words appear close together on the page

* The metric therefore uses the distance between pair
of words in the document

It can only be used if we have two or more words in
the query

Linnaeus University P

Word Distance metric

void word dist(Page p, String query)
//Split search query to get each word
String[] gws = query.split(” ")
double score = 0
//Iterate over each pair if words in the search query
for (i = 0 to gws.length() - 1)
//Use the document location function to get the
//location of the words
int locl = document loc(p, gws[i])
int loc2 document loc(p, gws[i+1])
//Increase the score by the distance between the two words,
//or a high value if any word is not found in the page
if (locl == 100000 or loc2 == 100000)
score += 100000
else
score += Abs(locl — loc2)
//Return the score
return score

Again, lower scores are better!

Linnasus University i

Which metric to use?

« There is no universal metric that consistently give good
results

 We therefore often have to combine different metrics

« We can also experiment with giving different weights to
different metrics

* The total score can for example be calculated as
(assuming metric scores are normalized):

totalScore = 1.0 * WordFrequency + 0.8 * DocumentLocation + 0.5 * WordDistance

Linnaesus University

Order by links

Linnaesus University

Inbound-Link ranking

« The second approach we will use is Inbound-Link ranking

 ltis different from Content-Based ranking in that it
doesn’t use the contents of a page

* |nstead it uses information others have provided about a
page, more specifically who has linked to the page

 The idea is that bad pages are less likely to be linked to,

and pages with good content have numerous other
pages linking to them

Linnaeus University P

Inbound-Link ranking

« To do this we need to slightly modify the code structure
we previously has defined.

« Each Page object must now also store all outgoing links
from that page:

PageDB
HashMap<String, Integer> wordTold; String url;
List<Page> pages; List<Integer> words;

' HashSet<String> links;

« Links are stored in a separate file in the Wikipedia data
set zip file

Linnaeus University

Inbound-Link ranking

« We will look into two ways of doing Inbound-Link
ranking:
— Simple Count
— PageRank algorithm

Linnaesus University

Simple Count

* As the name implies, this metric is simply a count of
how many other pages that link to the current page
« ltis easy to find

« For each page, we iterate over all other pages and
increase the score by 1 if the other page links to the

current page
* This is how academic papers are often ranked.

« A paper is more important if many other papers
reference to it

Linnaesus University

Simple Count

« Using inbound links as the only metric is of course not useable

« |t will not care about the search query, it only returns the page
with most links to it

* It must be combined with content-based ranking

« A drawback with Simple Count is that it treats every inbound
link equally

+ Ideally, we would like to weight inbound links from high quality
web sites higher

« This is dealt with in the PageRank algorithm

Linnaesus University

PageRank algorithm

« The PageRank algorithm was first invented by the founders of
Google, and is named after Larry Page

« Variations of it are now used by all large search engines

 The basic idea is that every page is assigned a score that
indicates how important the page is

« The importance of a page is calculated from the importance of
all other pages linking to it

 The importance score is then used to weight inbound links to a
page

Linnaeus University P

The Theory

« The algorithm calculates the probability that someone randomly
clicking on links will arrive at a certain page

« The more inbound links a page has from other popular pages,
the more likely it is that someone will visit the page by pure
chance

« If the user keeps clicking forever he will eventually reach every
page
« Since users stop surfing after a while, PageRank has a

damping factor of 0.85 indicating that there is 85% chance that
a user will continue clicking from a page

Linnaeus University P

PageRank example

D — B A C |—
D a— —> e —
e E 0.7 [—

—

« Pages B, C and D all link to page A

« Pages B, C and D have PageRank values
calculated

D » B links to three other pages, and C links to
four other pages.

* Donlylinks to A

0.2

Linnaeus University o

PageRank example

D — B A C |—
D a— —> e —
e E 0.7 [—

—

« To get PageRank of A, we take the PageRank
of each page linking to A divided by the total
number of links on that page

D * The sum is then multiplied by the damping
factor 0.85

* We also add a minimum value of 0.15

0.2

Linnaeus University o

PageRank example

PR(A) = 0.15 + 0.85 * (PR(B) / links(B) + PR(C) / links(C) + PR(D) / links(D))
=0.15+ 0.85 * (0.5/4 + 0.7/5 + 0.2/1)
=0.15+ 0.85 * (0.125 + 0.14 + 0.2)
=0.15 + 0.85 * 0.465

= 0.54525

<« B A C >
S J— > < >
< 0.5 ? 0.7 >
L >

N

D

0.2

Linnaeus University

PageRank example

0.125
—

. 0.14 C
«— —
0.54525 0.7 [—
—
0.2 * D has the highest contribution to A even if
it has lower PR score than B and C
* This is because it only links to A, and
D therefore contributes all its score to A
0.2

Linnaeus University

A problem

« The calculation of the PR score for a page is pretty
straightforward

* In our example we already knew the PR scores of all pages

linking to A
« But what if you didn’t know the PR score of B?
« ... and you can'’t calculate the score of B without knowing the

scores of all pages linking to B?
« For a new set of pages you don’t know any PR score
* How can this be solved?

Linnaesus University

The solution

 The solution is to set the PR score to an initial value, for
example 1.0

« The PR calculation for each page is then calculated over
several iterations

« After each iteration, the PR score for each page gets closer to
its true PR score

 The number of iterations needed depends on the number of
pages in the set

 |n our case we have a small set, so 20 iterations should be
enough

Linnaesus University

Performance considerations

« The PageRank algorithm is time-consuming since we need
several iterations to get close to the true PR scores

« Fortunately, we can pre-compute the PR scores for every page

* This is possible because inbound-links ranking does not care
about the contents of a page

 Therefore, the PR score is the same no matter what the search
query is

Linnaeus University P

PageRank implementation

» First, we need to add a PageRank score to the Page class:

PageDB
HashMap<String, Integer> wordTold; String url;
List<Page> pages; double pageRank = 1.0;

' List<Integer> words;
HashSet<String> links;

« Then, we need to iterate over a number of iterations, updating
PR scores for all pages each iteration

* Note! Using a hash set for the links instead of a list improves
performance roughly by a factor of 10

Linnaeus University

PageRank algorithm

//Iterate over all pages for a number of iterations
void calculatePageRank()
for (i = 0 to i < MAX ITERATIONS)
//Calculate pagerank values for all pages
ranks = List()
foreach (j = 0 to pageDB.pages().length())
ranks[j] = iteratePR(p)
//Set new pagerank values for all pages
foreach (j = 0 to pageDB.pages().length())
pageDB.pages().get(]j).pageRank = ranks[j]

//Calculate page rank value for a page
void iteratePR(Page p)
double pr = 0
//Iterate over all pages
foreach (Page po : pageDB.pages())
//Check if the other page links to this page
if (po.hasLinkTo(p))
//1f it does, increase score
pr += po.pageRank / po.getNoLinks()
//Calculate and return PR
pr = 0.85 * pr + 0.15
return pr

Linnaeus University

Normalization

* The purpose of normalization is to make sure all ranking
terms in the score calculation are between 0 and 1
« This makes it easier to find good weights for the different
ranking terms
— Word Frequency, Document Location, ...

* You shall therefore normalize PageRank as well
« This can however be done once after the PageRank

update iterations, since the scores are not affected by the
search query

Linnaeus University P

Testing it

« The Wikipedia data set consists of 400 pages about
programming and 250 pages about video games

« The following metrics and weights are used for ranking
the results:

score = 1.0 * WordFrequency + 0.8 * DocumentlLocation + 0.5 * PageRank

« We can try some search queries in our search engine:

Linnaesus University

Testing it

Search query: nintendo

Tl score | Content |Location|PageRank

Nintendo

Nintendo Switch

Nintendo Entertainment_System

List of Game_of the Year awards
Super_Nintendo_Entertainment_System

Found 111 results in 0.002 sec

Search

2.02
1.50
1.45
0.91
0.77

1.00
0.51
0.45
0.72
0.18

0.80
0.80
0.80
0.00
0.40

0.22
0.19
0.20
0.18
0.19

Linnaeus University

Testing it

Search query: java programming Search

Java (programming_language)
Programming_language

Object-oriented programming
Edsger W. Dijkstra
Programming_paradigm

Found 438 results in 0.004 sec

2.05
1.26
0.87
0.85
0.78

0.86
0.46
0.57
0.43

0.80
0.01
0.08
0.00
0.03

0. 25
0.38
0.33
0.28
0.32

Linnaeus University

Testing it

Search query: C++ Search
___ LUnk | Score | Content|Location|PageRank
C++ 2.04 1.00 0.80 0.24

Found 1 results in 0.002 sec

Linnaeus University

Notes on performance

« Selecting suitable data structures are necessary to get
good performance
« Using a HashSet with links instead of a List reduced the

time needed to calculate PageRank from around 50 sec
to around 4 sec on my laptop

* Are there other performance improvements you can think
of?

Linnaeus University P

Search Engines

Dr. Johan Hagelback

- johan.hagelback@Inu.se

>
Qg http://aiguy.org

Linnaeus University P

