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Search Engines

• This lecture is about full-text search engines, like Google and 
Microsoft Bing

• They allow people to search a large number of documents for a 
word or set of words, and rank the results based on how 
relevant documents are to the search query

• Improving search engines is a very important area in computer 
science, and companies like Google, Microsoft and Yahoo 
have spent huge amounts of money and resources in it

• Google started as an academic project describing the 
PageRank algorithm for improving result ranking



Search Engines

• Searching and Ranking is a huge area that has been around 
for a very long time, and we can only cover some key concepts 
here

• We will only use a relatively small data set consisting of the 
Wikipedia articles
– 250 articles about video games and 400 about programming

• Search engines for huge amounts of data like the Internet have 
many additional problems (for example storage) that we will not 
cover here



The data set

• A search engine needs a set of documents that the 
user can search in

• Search engines generate this set by using a web 
crawler

• The set can also be a collection of business 
documents in a company, which employees can 
search in



Indexing a document

• Once we have retrieved the contents of a document 
it must be indexed

• This involves creating a list of all words that appear 
in the document, and the location of each word

• We can then merge the word lists for all documents 
in a large table

• In case of HTML files, we must strip the file contents 
from all code and create a bag-of-words 
representation



Indexing

• The beginning of the index for the Action_game Wikipedia 
page will then look like:

• This representation has quite high storage requirements
• An optimization is to give each word a unique value, for 

example using hash codes, and store a list of integers instead
• In this case we must also store a table linking words to hash 

values

action game part of a series onaction games subgenres actionadventure game 
action roleplaying game open world stealth game survival game ...



Searching

• Searching for all documents that match a search query is 
straightforward once we have an index

• If we search for a single word, the system returns a list 
containing all documents that has the word in them

• If we search for multiple words, the system returns a list of 
documents that has any of the words in them
– Or perhaps only documents that have all words in them
– It depends on the purpose of the search engine. How 

inclusive/exclusive shall the system be?



Ranking

• The interesting and complex problem is how we can sort the 
result list of matching documents based on how relevant each 
document is to the search query

• To do this we need to generate a numeric score for each 
document’s relevance

• This score is typically a combination of several metrics
• There are lots of different metrics that can be used, and we will 

take a look at some of them in this lecture
• A metric can also typically be tweaked to hopefully work better 

for a specific search engine



Search Engine basics

• The first step is to build the basic structure of our search 
engine

• First we need to generate the index for all Wikipedia 
pages

• We can store this in for example a SQL database or, for 
smaller sets, in the main memory

• In our example we will generate the index when starting 
the system and store it in the main memory

• The word lists will be stored as integer values, so we 
need a mapping from word to values



Search Engine structure

PageDB

HashMap<String, Integer> wordToId;
List<Page> pages;

Page

String url;
List<Integer> words;



From word to id

• We will have an integer counter that is increased by 1 every 
time we have to add a unique word

• Instead of storing this counter, we can use the size of the hash 
map as counter:

//Get Id for a word
int getIdForWord(String word)

if (wordToId.containsKey(word))
//Word found in hashmap
return wordToId.get(word)

else
//Add missing word to hashmap
int id = wordToId.size()
wordToId.put(word, id)
return id



Generate the word list

• To generate the word list we read the bag-of-words 
data files in the Wikipedia data set zip file

• Create one Page object for each file in the 
data/Words/Games and data/Words/Programming
folders

• The Page object shall contain:
– The URL to the page
– The words in the page



Searching

• When searching for a query, we convert the search 
query to a sequence of word id values using the 
getIdForWord(String) method

• We then return all documents that has any of the 
word id values in their words list

• Now we have a search result, next step is to sort it!



Order by content



Content-Based Ranking

• The first approach we will use is Content-Based ranking
• It is metrics that sort the search results based on the 

contents of each page
• We will look at three different metrics:

– Word frequency
– Document location
– Word distance

• Earlier search engines often only used Content-Based 
ranking, and could give useable results



Basic query structure

• The basic query structure code shall work like this:
– Create an empty list where we place the results
– For each page:

• Calculate the metric value for each of the metrics used
– Normalize the metric values so all metrics are between 0 

and 1
– Calculate a final score that is a weighted sum of all 

normalized metric values

• The code can look something like this:



void query(String query)
result = new List()
Score scores

//Calculate score for each page in the pages database
for (i = 0 to pagedb.noPages())

Page p = pagedb.get(i)
scores.content[i] = getFrequencyScore(p, query)
scores.location[i] = getLocationScore(p, query)

//Normalize scores
normalize(scores.content, false)
normalize(scores.location, true)

//Generate result list
for (i = 0 to pagedb.noPages())

Page p = pagedb.get(i)
//Only include results where the word appears at least once
for (scores.content[i] > 0)

//Calculate sum of weighted scores
double score = 1.0 * scores.content[i] + 0.5 * 

scores.location[i]
result.add(Score(p, score))

//Sort result list with highest score first
sort(result)

//Return result list
return result

Query algorithm



AND / OR

• The query algorithm include all pages where any search 
query word appears at least once on the page

• This is equivalent to:

• Another option is to include all pages where all search 
query words must appear at least once on the page

• This is equivalent to:

super OR mario

super AND mario



Normalization

• We need all metric values to have a score between 
0 and 1, where 0 is really bad and 1 is really good

• The problem is that some metric functions give low 
values for good matches, and others high values for 
good matches

• We need a universal function that converts the 
metric value to a score between 0 and 1, regardless 
of if high values are good or bad

• The code for doing this can look like this:



void normalize (double[] scores, bool smallIsBetter)
if (smallIsBetter)

//Smaller values shall be inverted to higher values
//and scaled between 0 and 1
//Find min value in the array
double min_val = Min(scores)
//Divide the min value by the score
//(and avoid division by zero)
for (i = 0 to scores.length())

scores[i] = min_val / Max(scores[i], 0.00001)
else

//Higher values shall be scaled between 0 and 1
//Find max value in the array
double max_val = Max(scores)
//To avoid division by zero
max_val = Max(max_val, 0.00001)
//When we have a max value, divide all scores by it
for (i = 0 to scores.length())

scores[i] = scores[i] / max

Normalization algorithm



Word Frequency metric

• This metric scores a page based on how many times each 
word in the search query appears on the page:

void word_freq(Page p, String query)
//Split search query to get each word
String[] qws = query.split(” ”)
double score = 0
//Iterate over each word in the search query
foreach (String q : qws)

//Iterate over all words in the page
foreach (String word : p.words())

//Increase score by one if the page word matches
//the query word
if (word == q)

score += 1
//Return the score
return score

Higher scores are better!



Document Location metric

• Document location means the location of the words 
in the search query on the page

• It builds on the idea that if a word is relevant for the 
page, it appears close to the top of that page



Document Location metric
void document_loc(Page p, String query)

//Split search query to get each word
String[] qws = query.split(” ”)
double score = 0
//Iterate over each word in the search query
foreach (String q : qws)

//Iterate over all words in the page
boolean found = false
for (i = 0 to p.words().length())

String word = p.words().get(i)
//Score is the index of the first occurence of the
//word + 1 (to avoid zero scores)
if (word == q)

score += i + 1
//Stop once the word has been found
found = true
break

//If the word is not found on the page, increase
//the score by a high value
if (!found)

score += 100000
//Return the score
return score

Now, lower scores are better!



Word Distance metric

• Word Distance is based on the idea that queries 
using multiple words often find results more relevant 
if the words appear close together on the page

• The metric therefore uses the distance between pair 
of words in the document

• It can only be used if we have two or more words in 
the query



Word Distance metric

void word_dist(Page p, String query)
//Split search query to get each word
String[] qws = query.split(” ”)
double score = 0
//Iterate over each pair if words in the search query
for (i = 0 to qws.length() - 1)

//Use the document location function to get the
//location of the words
int loc1 = document_loc(p, qws[i])
int loc2 = document_loc(p, qws[i+1])
//Increase the score by the distance between the two words,
//or a high value if any word is not found in the page
if (loc1 == 100000 or loc2 == 100000)

score += 100000
else

score += Abs(loc1 – loc2)
//Return the score
return score

Again, lower scores are better!



Which metric to use?

• There is no universal metric that consistently give good 
results

• We therefore often have to combine different metrics
• We can also experiment with giving different weights to 

different metrics
• The total score can for example be calculated as 

(assuming metric scores are normalized):

totalScore = 1.0 * WordFrequency + 0.8 * DocumentLocation + 0.5 * WordDistance



Order by links



Inbound-Link ranking

• The second approach we will use is Inbound-Link ranking
• It is different from Content-Based ranking in that it 

doesn’t use the contents of a page
• Instead it uses information others have provided about a 

page, more specifically who has linked to the page
• The idea is that bad pages are less likely to be linked to, 

and pages with good content have numerous other 
pages linking to them



Inbound-Link ranking

• To do this we need to slightly modify the code structure 

we previously has defined.

• Each Page object must now also store all outgoing links 

from that page:

• Links are stored in a separate file in the Wikipedia data 

set zip file

PageDB

HashMap<String, Integer> wordToId;

List<Page> pages;

Page

String url;

List<Integer> words;

HashSet<String> links;



Inbound-Link ranking

• We will look into two ways of doing Inbound-Link 
ranking:
– Simple Count
– PageRank algorithm



Simple Count

• As the name implies, this metric is simply a count of 
how many other pages that link to the current page

• It is easy to find
• For each page, we iterate over all other pages and 

increase the score by 1 if the other page links to the 
current page

• This is how academic papers are often ranked.
• A paper is more important if many other papers 

reference to it



Simple Count

• Using inbound links as the only metric is of course not useable
• It will not care about the search query, it only returns the page 

with most links to it
• It must be combined with content-based ranking
• A drawback with Simple Count is that it treats every inbound 

link equally
• Ideally, we would like to weight inbound links from high quality 

web sites higher
• This is dealt with in the PageRank algorithm



PageRank algorithm

• The PageRank algorithm was first invented by the founders of 
Google, and is named after Larry Page

• Variations of it are now used by all large search engines
• The basic idea is that every page is assigned a score that 

indicates how important the page is
• The importance of a page is calculated from the importance of 

all other pages linking to it
• The importance score is then used to weight inbound links to a 

page



The Theory

• The algorithm calculates the probability that someone randomly 
clicking on links will arrive at a certain page

• The more inbound links a page has from other popular pages, 
the more likely it is that someone will visit the page by pure 
chance

• If the user keeps clicking forever he will eventually reach every 
page

• Since users stop surfing after a while, PageRank has a 
damping factor of 0.85 indicating that there is 85% chance that 
a user will continue clicking from a page



PageRank example

B

0.5

A

?

C

0.7

D

0.2

• Pages B, C and D all link to page A
• Pages B, C and D have PageRank values

calculated
• B links to three other pages, and C links to 

four other pages.
• D only links to A



PageRank example

B

0.5

A

?

C

0.7

D

0.2

• To get PageRank of A, we take the PageRank
of each page linking to A divided by the total
number of links on that page

• The sum is then multiplied by the damping
factor 0.85

• We also add a minimum value of 0.15



PageRank example
PR(A) = 0.15 + 0.85 * ( PR(B) / links(B) + PR(C) / links(C) + PR(D) / links(D) )

= 0.15 + 0.85 * (0.5/4 + 0.7/5 + 0.2/1)
= 0.15 + 0.85 * (0.125 + 0.14 + 0.2)
= 0.15 + 0.85 * 0.465
= 0.54525



PageRank example

B

0.5

A

0.54525

C

0.7

D

0.2

• D has the highest contribution to A even if
it has lower PR score than B and C

• This is because it only links to A, and 
therefore contributes all its score to A

0.125 0.14

0.2



A problem

• The calculation of the PR score for a page is pretty 
straightforward

• In our example we already knew the PR scores of all pages 
linking to A

• But what if you didn’t know the PR score of B?
• … and you can’t calculate the score of B without knowing the 

scores of all pages linking to B?
• For a new set of pages you don’t know any PR score
• How can this be solved?



The solution

• The solution is to set the PR score to an initial value, for 
example 1.0

• The PR calculation for each page is then calculated over 
several iterations

• After each iteration, the PR score for each page gets closer to 
its true PR score

• The number of iterations needed depends on the number of 
pages in the set

• In our case we have a small set, so 20 iterations should be 
enough



Performance considerations

• The PageRank algorithm is time-consuming since we need 
several iterations to get close to the true PR scores

• Fortunately, we can pre-compute the PR scores for every page
• This is possible because inbound-links ranking does not care 

about the contents of a page
• Therefore, the PR score is the same no matter what the search 

query is



PageRank implementation

• First, we need to add a PageRank score to the Page class:

• Then, we need to iterate over a number of iterations, updating 
PR scores for all pages each iteration

• Note! Using a hash set for the links instead of a list improves 
performance roughly by a factor of 10

PageDB

HashMap<String, Integer> wordToId;
List<Page> pages;

Page

String url;
double pageRank = 1.0;
List<Integer> words;
HashSet<String> links;



PageRank algorithm
//Iterate over all pages for a number of iterations
void calculatePageRank()

for (i = 0 to i < MAX_ITERATIONS)
//Calculate pagerank values for all pages
ranks = List()
foreach (j = 0 to pageDB.pages().length())

ranks[j] = iteratePR(p)
//Set new pagerank values for all pages
foreach (j = 0 to pageDB.pages().length())

pageDB.pages().get(j).pageRank = ranks[j]

//Calculate page rank value for a page
void iteratePR(Page p)

double pr = 0
//Iterate over all pages
foreach (Page po : pageDB.pages())

//Check if the other page links to this page
if (po.hasLinkTo(p))

//If it does, increase score
pr += po.pageRank / po.getNoLinks()

//Calculate and return PR
pr = 0.85 * pr + 0.15
return pr



Normalization

• The purpose of normalization is to make sure all ranking 
terms in the score calculation are between 0 and 1

• This makes it easier to find good weights for the different 
ranking terms
– Word Frequency, Document Location, …

• You shall therefore normalize PageRank as well
• This can however be done once after the PageRank 

update iterations, since the scores are not affected by the 
search query



Testing it

• The Wikipedia data set consists of 400 pages about 
programming and 250 pages about video games

• The following metrics and weights are used for ranking 
the results:

• We can try some search queries in our search engine:

score = 1.0 * WordFrequency + 0.8 * DocumentLocation + 0.5 * PageRank



Testing it



Testing it



Testing it



Notes on performance

• Selecting suitable data structures are necessary to get 
good performance

• Using a HashSet with links instead of a List reduced the 
time needed to calculate PageRank from around 50 sec 
to around 4 sec on my laptop

• Are there other performance improvements you can think 
of?
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