Dr. Johan Hagelbäck

johan.hagelback@lnu.se

http://aiguy.org

- This lecture is about full-text search engines, like Google and Microsoft Bing
- They allow people to search a large number of documents for a word or set of words, and rank the results based on how relevant documents are to the search query
- Improving search engines is a very important area in computer science, and companies like Google, Microsoft and Yahoo have spent huge amounts of money and resources in it
- Google started as an academic project describing the PageRank algorithm for improving result ranking

- Searching and Ranking is a huge area that has been around for a very long time, and we can only cover some key concepts here
- We will only use a relatively small data set consisting of the Wikipedia articles
 - 250 articles about video games and 400 about programming
- Search engines for huge amounts of data like the Internet have many additional problems (for example storage) that we will not cover here

The data set

- A search engine needs a set of documents that the user can search in
- Search engines generate this set by using a *web crawler*
- The set can also be a collection of business documents in a company, which employees can search in

Indexing a document

- Once we have retrieved the contents of a document it must be *indexed*
- This involves creating a list of all words that appear in the document, and the location of each word
- We can then merge the word lists for all documents in a large table
- In case of HTML files, we must strip the file contents from all code and create a bag-of-words representation

Indexing

• The beginning of the index for the *Action_game* Wikipedia page will then look like:

action game part of a series onaction games subgenres actionadventure game action roleplaying game open world stealth game survival game ...

- This representation has quite high storage requirements
- An optimization is to give each word a unique value, for example using hash codes, and store a list of integers instead
- In this case we must also store a table linking words to hash values

Searching

- Searching for all documents that match a search query is straightforward once we have an index
- If we search for a single word, the system returns a list containing all documents that has the word in them
- If we search for multiple words, the system returns a list of documents that has any of the words in them
 - Or perhaps only documents that have all words in them
 - It depends on the purpose of the search engine. How inclusive/exclusive shall the system be?

Ranking

- The interesting and complex problem is how we can sort the result list of matching documents based on how relevant each document is to the search query
- To do this we need to generate a numeric score for each document's relevance
- This score is typically a combination of several metrics
- There are lots of different metrics that can be used, and we will take a look at some of them in this lecture
- A metric can also typically be tweaked to hopefully work better for a specific search engine

Search Engine basics

- The first step is to build the basic structure of our search engine
- First we need to generate the index for all Wikipedia pages
- We can store this in for example a SQL database or, for smaller sets, in the main memory
- In our example we will generate the index when starting the system and store it in the main memory
- The word lists will be stored as integer values, so we need a mapping from word to values

Search Engine structure

From word to id

- We will have an integer counter that is increased by 1 every time we have to add a unique word
- Instead of storing this counter, we can use the size of the hash map as counter:

```
//Get Id for a word
int getIdForWord(String word)
if (wordToId.containsKey(word))
    //Word found in hashmap
    return wordToId.get(word)
else
    //Add missing word to hashmap
    int id = wordToId.size()
    wordToId.put(word, id)
    return id
```


Generate the word list

- To generate the word list we read the bag-of-words data files in the Wikipedia data set zip file
- Create one Page object for each file in the data/Words/Games and data/Words/Programming folders
- The Page object shall contain:
 - The URL to the page
 - The words in the page

Searching

- When searching for a query, we convert the search query to a sequence of word id values using the *getIdForWord(String)* method
- We then return all documents that has any of the word id values in their words *list*
- Now we have a search result, next step is to sort it!

Order by content

Content-Based Ranking

- The first approach we will use is *Content-Based* ranking
- It is metrics that sort the search results based on the contents of each page
- We will look at three different metrics:
 - Word frequency
 - Document location
 - Word distance
- Earlier search engines often only used Content-Based ranking, and could give useable results

Basic query structure

- The basic query structure code shall work like this:
 - Create an empty list where we place the results
 - For each page:
 - Calculate the metric value for each of the metrics used
 - Normalize the metric values so all metrics are between 0 and 1
 - Calculate a final score that is a weighted sum of all normalized metric values
- The code can look something like this:

Query algorithm

```
void query(String query)
 result = new List()
  Score scores
 //Calculate score for each page in the pages database
 for (i = 0 to pagedb.noPages())
   Page p = pagedb.get(i)
    scores.content[i] = getFrequencyScore(p, guery)
    scores.location[i] = getLocationScore(p, guery)
  //Normalize scores
 normalize(scores.content, false)
 normalize(scores.location, true)
  //Generate result list
 for (i = 0 to pagedb.noPages())
   Page p = pagedb.get(i)
   //Only include results where the word appears at least once
    for (scores.content[i] > 0)
      //Calculate sum of weighted scores
      double score = 1.0 * scores.content[i] + 0.5 *
scores.location[i]
      result.add(Score(p, score))
 //Sort result list with highest score first
 sort(result)
  //Return result list
  return result
```

AND / OR

- The query algorithm include all pages where any search query word appears at least once on the page
- This is equivalent to:

super OR mario

- Another option is to include all pages where all search query words must appear at least once on the page
- This is equivalent to:

super AND mario

Normalization

- We need all metric values to have a score between 0 and 1, where 0 is really bad and 1 is really good
- The problem is that some metric functions give low values for good matches, and others high values for good matches
- We need a universal function that converts the metric value to a score between 0 and 1, regardless of if high values are good or bad
- The code for doing this can look like this:

Normalization algorithm

```
void normalize (double[] scores, bool smallIsBetter)
  if (smallIsBetter)
    //Smaller values shall be inverted to higher values
    //and scaled between 0 and 1
    //Find min value in the array
    double min val = Min(scores)
    //Divide the min value by the score
    //(and avoid division by zero)
    for (i = 0 to scores.length())
      scores[i] = min val / Max(scores[i], 0.00001)
  else
    //Higher values shall be scaled between 0 and 1
    //Find max value in the array
    double max val = Max(scores)
    //To avoid division by zero
    \max val = \max(\max val, 0.00001)
    //When we have a max value, divide all scores by it
    for (i = 0 to scores.length())
      scores[i] = scores[i] / max
```


Word Frequency metric

• This metric scores a page based on how many times each word in the search query appears on the page:

Higher scores are better!

Document Location metric

- Document location means the location of the words in the search query on the page
- It builds on the idea that if a word is relevant for the page, it appears close to the top of that page

Document Location metric

```
void document loc(Page p, String query)
  //Split search query to get each word
  String[] gws = guery.split(" ")
  double score = 0
  //Iterate over each word in the search query
  foreach (String q : qws)
    //Iterate over all words in the page
    boolean found = false
    for (i = 0 to p.words().length())
      String word = p.words().get(i)
      //Score is the index of the first occurence of the
      //word + 1 (to avoid zero scores)
      if (word == q)
        score += i + 1
        //Stop once the word has been found
        found = true
        break
   //If the word is not found on the page, increase
    //the score by a high value
    if (!found)
      score += 100000
  //Return the score
  return score
```

Linnæus University

Now, lower scores are better!

Word Distance metric

- Word Distance is based on the idea that queries using multiple words often find results more relevant if the words appear close together on the page
- The metric therefore uses the distance between pair of words in the document
- It can only be used if we have two or more words in the query

Word Distance metric

```
void word dist(Page p, String query)
  //Split search query to get each word
  String[] qws = query.split(" ")
  double score = 0
  //Iterate over each pair if words in the search query
  for (i = 0 \text{ to } qws.length() - 1)
    //Use the document location function to get the
    //location of the words
    int loc1 = document loc(p, gws[i])
    int loc2 = document loc(p, gws[i+1])
    //Increase the score by the distance between the two words,
    //or a high value if any word is not found in the page
    if (loc1 == 100000 or loc2 == 100000)
      score += 100000
    else
      score += Abs(loc1 - loc2)
  //Return the score
  return score
```

Again, lower scores are better!

Which metric to use?

- There is no universal metric that consistently give good results
- We therefore often have to combine different metrics
- We can also experiment with giving different weights to different metrics
- The total score can for example be calculated as (assuming metric scores are normalized):

```
totalScore = 1.0 * WordFrequency + 0.8 * DocumentLocation + 0.5 * WordDistance
```


Order by links

Inbound-Link ranking

- The second approach we will use is *Inbound-Link* ranking
- It is different from *Content-Based* ranking in that it doesn't use the contents of a page
- Instead it uses information others have provided about a page, more specifically who has linked to the page
- The idea is that bad pages are less likely to be linked to, and pages with good content have numerous other pages linking to them

Inbound-Link ranking

- To do this we need to slightly modify the code structure we previously has defined.
- Each Page object must now also store all outgoing links from that page:

 Links are stored in a separate file in the Wikipedia data set zip file

Inbound-Link ranking

- We will look into two ways of doing Inbound-Link ranking:
 - Simple Count
 - PageRank algorithm

Simple Count

- As the name implies, this metric is simply a count of how many other pages that link to the current page
- It is easy to find
- For each page, we iterate over all other pages and increase the score by 1 if the other page links to the current page
- This is how academic papers are often ranked.
- A paper is more important if many other papers reference to it

Simple Count

- Using inbound links as the only metric is of course not useable
- It will not care about the search query, it only returns the page with most links to it
- It must be combined with content-based ranking
- A drawback with *Simple Count* is that it treats every inbound link equally
- Ideally, we would like to weight inbound links from high quality web sites higher
- This is dealt with in the *PageRank* algorithm

PageRank algorithm

- The PageRank algorithm was first invented by the founders of Google, and is named after Larry Page
- Variations of it are now used by all large search engines
- The basic idea is that every page is assigned a score that indicates how important the page is
- The importance of a page is calculated from the importance of all other pages linking to it
- The importance score is then used to weight inbound links to a page

The Theory

- The algorithm calculates the probability that someone randomly clicking on links will arrive at a certain page
- The more inbound links a page has from other popular pages, the more likely it is that someone will visit the page by pure chance
- If the user keeps clicking forever he will eventually reach every page
- Since users stop surfing after a while, PageRank has a damping factor of 0.85 indicating that there is 85% chance that a user will continue clicking from a page

- To get PageRank of A, we take the PageRank of each page linking to A divided by the total number of links on that page
- The sum is then multiplied by the *damping factor* 0.85
- We also add a minimum value of 0.15

0.2

A problem

- The calculation of the PR score for a page is pretty straightforward
- In our example we already knew the PR scores of all pages linking to A
- But what if you didn't know the PR score of B?
- ... and you can't calculate the score of B without knowing the scores of all pages linking to B?
- For a new set of pages you don't know any PR score
- How can this be solved?

The solution

- The solution is to set the PR score to an initial value, for example 1.0
- The PR calculation for each page is then calculated over several iterations
- After each iteration, the PR score for each page gets closer to its true PR score
- The number of iterations needed depends on the number of pages in the set
- In our case we have a small set, so 20 iterations should be enough

Performance considerations

- The PageRank algorithm is time-consuming since we need several iterations to get close to the true PR scores
- Fortunately, we can pre-compute the PR scores for every page
- This is possible because inbound-links ranking does not care about the contents of a page
- Therefore, the PR score is the same no matter what the search query is

PageRank implementation

• First, we need to add a PageRank score to the Page class:

- Then, we need to iterate over a number of iterations, updating PR scores for all pages each iteration
- **Note!** Using a hash set for the links instead of a list improves performance roughly by a factor of 10

PageRank algorithm

```
//Iterate over all pages for a number of iterations
void calculatePageRank()
  for (i = 0 to i < MAX ITERATIONS)</pre>
    //Calculate pagerank values for all pages
    ranks = List()
    foreach (j = 0 to pageDB.pages().length())
      ranks[j] = iteratePR(p)
    //Set new pagerank values for all pages
    foreach (j = 0 to pageDB.pages().length())
      pageDB.pages().get(j).pageRank = ranks[j]
//Calculate page rank value for a page
void iteratePR(Page p)
  double pr = 0
  //Iterate over all pages
  foreach (Page po : pageDB.pages())
    //Check if the other page links to this page
    if (po.hasLinkTo(p))
      //If it does, increase score
      pr += po.pageRank / po.getNoLinks()
  //Calculate and return PR
  pr = 0.85 * pr + 0.15
  return pr
```


Normalization

- The purpose of normalization is to make sure all ranking terms in the score calculation are between 0 and 1
- This makes it easier to find good weights for the different ranking terms
 - Word Frequency, Document Location, ...
- You shall therefore normalize PageRank as well
- This can however be done once after the PageRank update iterations, since the scores are not affected by the search query

- The Wikipedia data set consists of 400 pages about programming and 250 pages about video games
- The following metrics and weights are used for ranking the results:

score = 1.0 * WordFrequency + 0.8 * DocumentLocation + 0.5 * PageRank

• We can try some search queries in our search engine:

Search query: I	nintendo	Search
-----------------	----------	--------

Link	Score	Content	Location	PageRank
Nintendo	2.02	1.00	0.80	0.22
Nintendo_Switch	1.50	0.51	0.80	0.19
Nintendo Entertainment System	1.45	0.45	0.80	0.20
List of Game of the Year awards	0.91	0.72	0.00	0.18
Super Nintendo Entertainment System	0.77	0.18	0.40	0.19

Found 111 results in 0.002 sec

Search query: java programming

Search

Link	Score	Content	Location	PageRank
Java_(programming_language)	2.05	1.00	0.80	0.25
Programming_language	1.26	0.86	0.01	0.38
Object-oriented_programming	0.87	0.46	0.08	0.33
Edsger_WDijkstra	0.85	0.57	0.00	0.28
Programming_paradigm	0.78	0.43	0.03	0.32

Found 438 results in 0.004 sec

Search query: C++	Search				
Link		Score	Content	Location	PageRank
<u>C++</u>		2.04	1.00	0.80	0.24

Found 1 results in 0.002 sec

Notes on performance

- Selecting suitable data structures are necessary to get good performance
- Using a HashSet with links instead of a List reduced the time needed to calculate PageRank from around 50 sec to around 4 sec on my laptop
- Are there other performance improvements you can think of?

Dr. Johan Hagelbäck

johan.hagelback@lnu.se

http://aiguy.org

