Networks Security Part 1 Basics and ARP

Circuit and Packet Switching

- + Circuit switching
 - Legacy phone network
 - Single route through sequence of hardware devices established when two nodes start communication
 - + Data sent along route
 - Route maintained until communication ends

- Packet switching
 - Internet
 - + Data split into packets
 - Packets transported independently through network
 - Each packet handled on a best efforts basis
 - Packets may follow different routes

Protocols

7

A protocol defines the rules for communication between computers

 Protocols are broadly classified as connectionless and connection oriented

- + Connectionless protocol
 - + Sends data out as soon as there is enough data to be transmitted
 - + E.g., user datagram protocol (UDP)
- + Connection-oriented protocol
 - + Provides a reliable connection stream between two nodes
 - + Consists of set up, transmission, and tear down phases
 - Creates virtual circuit-switched network
 - + E.g., transmission control protocol (TCP)

Network Layers

- Network models typically use a stack of layers
 Higher layers use the services of lower layers via encapsulation
 - + A layer can be implemented in hardware or software
 - The bottommost layer must be in hardware
- A network device may implement several layers
- A communication channel between two nodes is established for each layer
 - + Actual channel at the bottom layer
 - + Virtual channel at higher layers

Intermediate Layers

11

+ Link layer

- Local area network: Ethernet, WiFi, optical fiber
- 48-bit media access control (MAC) addresses
- + Packets called frames

Network layer

- Internet-wide communication
- + Best efforts
- + 32-bit internet protocol (IP) addresses in IPv4
- + 128-bit IP addresses in IPv6
- Transport layer
 - + 16-bit addresses (ports) for classes of applications
 - + Connection-oriented transmission layer protocol (TCP)
 - + Connectionless user datagram protocol (UDP)

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

MAC Addresses

- Most network interfaces come with a predefined MAC address
- A MAC address is a 48-bit number usually represented in hex
 + E.g., 00-1A-92-D4-BF-86
- The first three octets of any MAC address are IEEE-assigned Organizationally Unique Identifiers
 - + E.g., Cisco 00-1A-A1, D-Link 00-1B-11, ASUSTek 00-1A-92
- The next three can be assigned by organizations as they please, with uniqueness being the only constraint
- Organizations can utilize MAC addresses to identify computers on their network
- MAC address can be reconfigured by network interface driver software

MAC Address Filtering

- A switch can be configured to provide service only to machines with specific MAC addresses
- Allowed MAC addresses need to be registered with a network administrator
- A MAC spoofing attack impersonates another machine
 - + Find out MAC address of target machine
 - Reconfigure MAC address of rogue machine
 - Turn off or unplug target machine
- + Countermeasures
 - Block port of switch when machine is turned off or unplugged
 - Disable duplicate MAC addresses

Viewing and Changing MAC Addresses

Viewing the MAC addresses of the interfaces of a machine

- + Linux: ifconfig
- Windows: ipconfig /all
- + Changing a MAC address in Linux
 - + Stop the networking service: /etc/init.d/network stop
 - + Change the MAC address: if config eth0 hw ether <MAC-address>
 - + Start the networking service: /etc/init.d/network start
- Changing a MAC address in Windows
 - + Open the Network Connections applet
 - + Access the properties for the network interface
 - + Click "Configure ..."
 - + In the advanced tab, change the network address to the desired value
- Changing a MAC address requires administrator privileges

ARP Spoofing

The ARP table is updated whenever an ARP response is received

- Requests are not tracked
- ARP announcements are not authenticated

Machines trust each other

 A rogue machine can spoof other machines

ARP Poisoning (ARP Spoofing)

- According to the standard, almost all ARP implementations are stateless
- An arp cache updates every time that it receives an arp reply... even if it did not send any arp request!
- It is possible to "poison" an arp cache by sending gratuitous arp replies
- Using static entries solves the problem but it is almost impossible to manage!

Telnet Protocol (RFC 854)

 Telnet is a protocol that provides a general, bi-directional, not encrypted communication

- +telnet is a generic TCP client
 - + Allows a computer to connect to another one
 - Provides remote login capabilities to computers on the Internet
 - + Sends whatever you type
 - Prints whatever comes back
 - Useful for testing TCP servers (ASCII based protocols)

📶 (Untitled) - Wireshark		
<u>File E</u> dit <u>V</u> iew <u>G</u> o <u>C</u> aptu	ure <u>A</u> nalyze <u>S</u> tatistics <u>H</u> elp	menu
	🖬 🗶 😂 占 🔍 🗢 🔶 🥥	중 业 🗐 🖶 🔍 🍳 🖾 🕍 🍊 main toolbar
<u>F</u> ilter:		• Expression Clear Apply filter toolbar
No Time Sour	ce Destination	Protocol Info
1915 18.571194 212.	.97.59.91 128.148.36.11	UDP Source port: 38662 Destination port: inovaport1
1917 18.590200 128.	.148.36.11 212.97.59.91	UDP Source port: inovaport1 Destination port: 38662
1918 18.591586 128.	.148.36.11 212.97.59.91	UDP Source port: inovaport1 Destination port: 38662
1919 18.593191 212.	.97.59.91 128.148.36.11	UDP Source port: 38662 Destination port: inovaport1
1920 18.602209 98.1	136.112.142 128.148.36.11	TCP http > 61219 [ACK] IDD Source part: 28662 F packet list pane
1921 18. 625996 128.	.148.36.11 212.97.59.91	UDP Source port: inovaport1 Destination port: 38662
1923 18.626201 212.	.97.59.91 128.148.36.11	UDP Source port: 38662 Destination port: inovaport1
1924 18.627287 128.	.148.36.11 212.97.59.91	UDP Source port: inovaport1 Destination port: 38662
1925 18.648212 212.	.97.59.91 128.148.36.11	UDP Source port: 38662 Destination port: inovaport1
1926 18.65/224 128.	.148.30.11 212.97.59.91	UDP Source port: inovaporti Destination port: 38662
1927 18. 676199 98.1	136.112.142 128.148.36.11	TCP http > 61219 [ETN, ACK] Seg=1 Ack=2 win=32850 Len=0
1929 18.676289 128.	.148.36.11 98.136.112.142	TCP 61219 > http [ACK] Seq=2 Ack=2 Win=16425 Len=0
1020 10 606106 120	1/10 26 11 212 07 50 01	UDD Cource port: inovaport1 Destination port: 20662
4 III III III III III III III III III I		
🗄 Frame 1920 (60 bytes on wire, 60 bytes captured)		
Ethernet II, Src: Micro-St_b2:d1:76 (00:0c:76:b2:d1:76), Dst: HewlettP_34:60:88 (00:22:64:34:60:88)		
B Source: Micro-St_b2:d1:76 (00:0c:76:b2:d1:76)		
Туре: IP (0х0800)		
Trailer: 00000000000		
Hernet Protocol, Src: 98.136.112.142 (98.136.112.142), Dst: 128.1 Packet details name		
Transmission Control Protocol, Src Port: http (80), Dst Port: 61219 (61-19), Seq. 1, Ack. 2, Cent 0		
0000 00 22 64 34 60	88 00 0c 76 b2 d1 76 08 00	45.00 "d4" y y E
0010 00 28 cd 6f 40	00 32 06 03 ab 62 88 70 8e	80 94 . (.o@.2b.p
0020 24 0b 00 50 ef 2	23 27 d8 f6 b0 ee 31 e7 Oe	50 10 SP.#'1P. F packet bytes pane
0030 80 52 d4 8e 00 0	00 00 00 00 00 00 00	.R
Ethernet (eth), 20 bytes	Packets: 2017 Displayed: 2	2017 Marked: 0 Dropped: 0 🗧 Status: Daruit 26

