Public-Key Cryptography and

 Message Authentication

 Message Authentication}

Ola Flygt
Linnaeus University, Sweden
http://w3.msi.vxu.se/users/ofl/
Ola.Flygt@Inu.se
+46470708649

OUTLINE

+ Secure Hash Functions and HMAC +Public-Key Cryptography Principles
+ Public-Key Cryptography Algorithms
+ Approaches to Message Authentication
+ Digital Signatures
+Key Management

Hash Functions:' Main Idea

+ Hash function H is a lossy compression function
+ Collision: $H(x)=H\left(x^{\prime}\right)$ for some inputs $x \neq x^{\prime}$
$+\mathrm{H}(\mathrm{x})$ should look "random"
+ Every bit (almost) equally likely to be 0 or 1
+ Cryptographic hash function must have certain properties

Simple Hash Function

+ Hash code is bitwise XOR on the columns
+ One-bit circular shift on the hash value after each block is processed would improve the code

Secure HASH Functions

+ Purpose of the HASH function is to produce a "fingerprint.
+ Properties of a HASH function H :

1. H can be applied to a block of data at any size
2. H produces a fixed length output
3. $H(x)$ is easy to compute for any given x.
4. For any given code h, it is computationally infeasible to find x such that $H(x)=h$
5. For any given block x, it is computationally infeasible to find $y \neq x$ with $\mathrm{H}(\mathrm{y})=\mathrm{H}(\mathrm{x})$.
6. It is computationally infeasible to find any pair (x, y) such that $H(x)=H(y)$

Secure Hash Algorithm

+ SHA originally designed by NIST \& NSA in 1993
+ was revised in 1995 as SHA-1
+ US standard for use with DSA signature scheme
+ standard is FIPS 180-1 1995, also Internet RFC3174
+ nb. the algorithm is SHA, the standard is SHS
+ based on design of MD4 with key differences
+ produces 160-bit hash values
+ In 2005 results on security of SHA-1 have raised concerns on its use in future applications

Revised Secure Hash Standard

+ NIST issued revision FIPS 180-2 in 2002
+ adds 3 additional versions of SHA
+ SHA-256, SHA-384, SHA-512
+ designed for compatibility with increased security provided by the AES cipher
+ structure \& detail is similar to SHA-1
+ hence analysis should be similar
+ but security levels are rather higher

SHA Versions

SHA-1 SHA-224 SHA-256 SHA-384 SHA-512

Message digest size	160	224	256	384	512
Message size	$<2^{64}$	$<2^{64}$	$<2^{64}$	$<2^{128}$	$<2^{128}$
Block size	512	512	512	1024	1024
Word size	32	32	32	64	64
Number of steps	80	64	64	80	80

SHA-512 Overview

SHA-512 Compression Function

+ heart of the algorithm (the Merkle-Damgård construction)
+ processing message in 1024-bit blocks
+ consists of 80 rounds
+ updating a 512-bit buffer
+ using a 64-bit value derived from the current message block and a round constant based on cube root of first 80 prime numbers

One-Way

+ Intuition: hash should be hard to invert
4"Preimage resistance"
+ Let $h\left(x^{\prime}\right)=y \in\{0,1\}^{n}$ for a random x^{\prime}
+ Given random y, it should be hard to find any x such that $h(x)=y$
+ How hard?
+ Brute-force: try every possible x, see if $h(x)=y$
+ SHA-1 (common hash function) has 160-bit output
+ Suppose have hardware that' Il do 2^{30} trials a pop
+ Assuming 2^{34} trials per second, can do 2^{89} trials per year
+ Will take 2^{71} years to invert SHA-1 on a random image

"Birthday Paradox"

+ T people
+ Suppose each birthday is a random number taken from K days $(\mathrm{K}=365)$ - how many possibilities?
+ K^{\top} - samples with replacement
+ How many possibilities that are all different?
$+(K)_{T}=K(K-1) \ldots(K-T+1)-$ samples without replacement
+ Probability of no repetition?
$+(K)_{T} / K^{\top} \approx 1-T(T-1) / 2 K$
+ Probability of repetition?
$+\mathrm{O}\left(\mathrm{T}^{2}\right)$

Collision Resistance

+ Should be hard to find $\mathrm{x} \neq \mathrm{x}^{\prime}$ such that $\mathrm{h}(\mathrm{x})=\mathrm{h}\left(\mathrm{x}^{\prime}\right)$
+ Brute-force collision search is $O\left(2^{n / 2}\right)$, not $O\left(2^{n}\right)$
$+\mathrm{n}=$ number of bits in the output of hash function
+ For SHA-1, this means $\mathrm{O}\left(2^{80}\right)$ vs. $\mathrm{O}\left(2^{160}\right)$
+ Example:
+ In a group of people, how many are required to have a 50\% chance of two people having the same birthday?
+ Perhaps surprisingly the answer is only 23 even if there are 365 days on a year.
+ If there are more then 60 people the probability for a collision is almost 100%

SHA-1 weakness

t In 2005 Chinese cryptographer Xiaoyun Wang found collision-finding attacks that require only 2^{63} operations, rather than the 2^{80} operations stated by the birthday attack. Such an attack is feasible for a very well-funded adversary.

+ Consequently, for many applications one needs to look for stronger hash functions. The SHA-2 family, including SHA-224, SHA-256 and SHA-512 already exists, but they are based on similar ideas as SHA-1.
+ It seems that new ideas are needed in the design of hash functions, as well as careful analysis of what properties are needed for various applications.

SHA-3, the new kid in the block

+ On November 2, 2007, NIST announced a public competition to develop a new cryptographic hash algorithm.
+ Deadline for proposals was October 31, 2008.14 candidates selected for 2nd round in 2009, 6 for 3rd round in 2010.
+ The winner, Keccak, announced on October 2, 2012.
+ Keccak is now officially SHA-3; see www.nist.gov/ hash-competition.

Keyed Hash Functions as MACs

+ want a MAC based on a hash function
+ because hash functions are generally faster
+ crypto hash function code is widely available
+ hash includes a key along with message
+ original proposal:
KeyedHash = Hash(Key|Message)
+ some weaknesses were found with this
+ eventually led to development of HMAC

HMAC Design Objectives

+ use, without modifications, hash functions
+ allow for easy replaceability of embedded hash function
+ preserve original performance of hash function without significant degradation
+ use and handle keys in a simple way.
+ have well understood cryptographic analysis of authentication mechanism strength

HMAC

t specified as Internet standard RFC2104

+ uses hash function on the message:

```
HMAC
Hash[(K+ XOR ipad) || M)] ]
```

+ where K^{+}is the key padded out to size
+ opad, ipad are specified padding constants
+ overhead is just 3 more hash calculations than the message needs alone
+ any hash function can be used
+ eg. MD5, SHA-1, RIPEMD-160, Whirlpool

HMAC Security

+ proved security of HMAC relates to that of the underlying hash algorithm
+ attacking HMAC requires either:
+ brute force attack on key used
+ birthday attack (but since keyed, would need to observe a very large number of messages)
+ choose hash function used based on speed verses security constraints

Private-Key Cryptography (revisited)

+ traditional private/secret/single key cryptography uses one key
+ shared by both sender and receiver
+ if this key is disclosed communications are compromised
+ also is symmetric, parties are equal
+ hence does not protect sender from receiver forging a message \& claiming is sent by sender

Public-Key Cryptography the new idea

+ probably most significant advance in the 3000 year history of cryptography
+ uses two keys - a public \& a private key
+ asymmetric since parties are not equal
+ uses clever application of number theoretic concepts to function
+ complements rather than replaces private key crypto

Why Public-Key Cryptography?

+ developed to address two key issues:
+ key distribution - how to have secure communications in general without having to trust a KDC with your key
+ digital signatures - how to verify a message comes intact from the claimed sender
+ public invention due to Whitfield Diffie \& Martin Hellman at Stanford Uni in 1976
+ known earlier in classified community

Public-Key Cryptography

public-key/two-key/asymmetric cryptography involves the use of two keys:

+ a public-key, which may be known by anybody, and can be used to encrypt messages, and verify signatures
+ a related private-key, known only to the recipient, used to decrypt messages, and sign (create) signatures
+ infeasible to determine private key from public
+ is asymmetric because
+ those who encrypt messages or verify signatures cannot decrypt messages or create signatures

Public-Key Cryptography Principles

+ The use of two keys has consequences in: key distribution, confidentiality and authentication.
+ The scheme has six ingredients
+ Plaintext
+ Encryption algorithm
+ Public and private key
+ Cipher text
+ Decryption algorithm

Encryption using Public-Key System

Authentication using Public-Key System

Applications for Public-Key Cryptosystems

+ Three categories:
+Encryption/decryption: The sender encrypts a message with the recipient's public key.
+Digital signature: The sender "signs" a message with its private key.
+Key exchange: Two sides cooperate two exchange a session key.

Requirements for Public-Key Cryptography

1. Computationally easy for a party B to generate a pair (public key $K U_{b}$, private key KR_{b})
2. Easy for sender to generate cipher text:

$$
C=E_{K U b}(M)
$$

3. Easy for the receiver to decrypt cipher text using private key:

$$
M=D_{K R b}(C)=D_{K R b}\left[E_{K U b}(M)\right]
$$

Requirements for Public-Key Cryptography

4. Computationally infeasible to determine private key $\left(\mathrm{KR}_{\mathrm{b}}\right)$ knowing public key $\left(\mathrm{KU}_{\mathrm{b}}\right)$
5. Computationally infeasible to recover message M, knowing KU_{b} and cipher text C
6. Either of the two keys can be used for encryption, with the other used for decryption:

$$
M=D_{K R b}\left[E_{K U b}(M)\right]=D_{K U b}\left[E_{K R b}(M)\right]
$$

Public-Key Cryptographic Algorithms

+ RSA and Diffie-Hellman
+ RSA - Ron Rivest, Adi Shamir and Len Adleman at MIT, in 1977.
+ RSA is a block cipher
+ The most widely implemented
+ Diffie-Hellman
+ Exchange a secret key securely
+ Compute discrete logarithms

The RSA Algorithm Key Generation

1. Select p, q
2. Calculate
3. Calculate
4. Select integer e
5. Calculate d
6. Public Key
7. Private key
p and q both prime
$n=p \times q$
$\Phi(n)=(p-1)(q-1)$
$\operatorname{gcd}(\Phi(n), e)=1 ; 1<e<\Phi(n)$
$d=e^{-1} \bmod \Phi(n)$
$K U=\{e, n\}$
$K R=\{d, n\}$

Example of RSA Algorithm

The RSA Algorithm Encryption

+ Plain text:
$M<n$
+ Cipher text:
$C=M^{e}(\bmod n)$

The RSA Algorithm Decryption

+Cipher text:

+ Plain text:
C
$M=C^{d}(\bmod n)$

Diffie-Hellman Key Exchange

User A
User B

Other Public-Key Cryptographic Algorithms

+ Digital Signature Standard (DSS)
+ Makes use of the SHA-1
+ Not for encryption or key exchange
+ Elliptic-Curve Cryptography (ECC)
+ Good for smaller bit size
+ Low confidence level, compared with RSA
+ Very complex
+ ElGamal
+ an asymmetric key encryption algorithm based on the Diffie-Hellman key exchange

Authentication

+ Requirements - must be able to verify that:

1. Message came from apparent source or author,
2. Contents have not been altered,
3. Sometimes, it was sent at a certain time or sequence.

+ Protection against active attack (falsification of data and transactions)

Approaches to Message Authentication

+ Authentication Using Conventional Encryption
+ Only the sender and receiver should share a key
+ Message Authentication without Message Encryption
+ An authentication tag is generated and appended to each message
+ Message Authentication Code
+ Calculate the MAC as a function of the message and the key. $M A C=F(K, M)$

Authentication using a Message Authentication Code

One-way HASH function

(a) Using conventional encryption

(b) Using public-key encryption

One-way HASH function

+ Secret value is added before the hash and removed before transmission.

Key Management Public-Key Certificate Use

Unsigned certificate: contains user ID,

Signed certificate:
Recipient can verify signature using CA's public key.

