
Public-Key Cryptography
and

Message Authentication
Ola Flygt

Linnaeus University, Sweden
http://w3.msi.vxu.se/users/ofl/

Ola.Flygt@lnu.se
+46 470 70 86 49

2

OUTLINE

ª Secure Hash Functions and HMAC
ª Public-Key Cryptography Principles
ª Public-Key Cryptography Algorithms
ª Approaches to Message Authentication
ª Digital Signatures
ª Key Management

Hash Functions: Main Idea

bit strings of any length n-bit bit strings

. .

.
.
.

x’
x’’

x

y’
y

hash function H

ª Hash function H is a lossy compression function
ª  Collision: H(x)=H(x’) for some inputs x≠x’

ª H(x) should look “random”
ª  Every bit (almost) equally likely to be 0 or 1

ª  Cryptographic hash function must have certain
properties

“message
digest”

message

3

4

Simple Hash Function

ª Hash code is bitwise XOR on the columns
ª One-bit circular shift on the hash value after

each block is processed would improve the
code

5

Secure HASH Functions
ª  Purpose of the HASH function is to produce

a ”fingerprint.
ª  Properties of a HASH function H :

1.  H can be applied to a block of data at any size
2.  H produces a fixed length output
3.  H(x) is easy to compute for any given x.
4.  For any given code h, it is computationally

infeasible to find x such that H(x) = h
5.  For any given block x, it is computationally

infeasible to find with H(y) = H(x).
6.  It is computationally infeasible to find any pair

(x, y) such that H(x) = H(y)

xy ≠

Secure Hash Algorithm

ª SHA originally designed by NIST & NSA in 1993
ª was revised in 1995 as SHA-1
ª US standard for use with DSA signature scheme

ª  standard is FIPS 180-1 1995, also Internet RFC3174
ª  nb. the algorithm is SHA, the standard is SHS

ª  based on design of MD4 with key differences
ª  produces 160-bit hash values
ª  In 2005 results on security of SHA-1 have raised

concerns on its use in future applications

6

Revised Secure Hash
Standard

ª NIST issued revision FIPS 180-2 in 2002
ª adds 3 additional versions of SHA

ª SHA-256, SHA-384, SHA-512
ª designed for compatibility with increased

security provided by the AES cipher
ª structure & detail is similar to SHA-1
ª hence analysis should be similar
ª but security levels are rather higher

7

SHA Versions

SHA-1 SHA-224 SHA-256 SHA-384 SHA-512

Message digest size 160 224 256 384 512

Message size < 264 < 264 < 264 < 2128 < 2128

Block size 512 512 512 1024 1024

Word size 32 32 32 64 64

Number of steps 80 64 64 80 80
8

SHA-512 Overview

9

SHA-512 Compression
Function

ª heart of the algorithm (the Merkle-Damgård
construction)

ª processing message in 1024-bit blocks
ª consists of 80 rounds

ª updating a 512-bit buffer
ª using a 64-bit value derived from the current

message block and a round constant based on
cube root of first 80 prime numbers

10

One-Way
ª Intuition: hash should be hard to invert

ª “Preimage resistance”
ª Let h(x’)=y∈{0,1}n for a random x’
ª Given random y, it should be hard to find any x

such that h(x)=y

ª How hard?
ª Brute-force: try every possible x, see if h(x)=y
ª SHA-1 (common hash function) has 160-bit output

ª Suppose have hardware that’ll do 230 trials a pop
ª Assuming 234 trials per second, can do 289 trials per year
ª Will take 271 years to invert SHA-1 on a random image

“Birthday Paradox”
ª  T people
ª  Suppose each birthday is a random number taken from

K days (K=365) – how many possibilities?
ª  KT - samples with replacement

ª How many possibilities that are all different?
ª  (K)T = K(K-1)…(K-T+1) - samples without replacement

ª  Probability of no repetition?
ª  (K)T/KT ≈ 1 - T(T-1)/2K

ª  Probability of repetition?
ª O(T2)

12

Collision Resistance
ª  Should be hard to find x≠x’ such that h(x)=h(x’)
ª  Brute-force collision search is O(2n/2), not O(2n)

ª  n = number of bits in the output of hash function
ª  For SHA-1, this means O(280) vs. O(2160)

ª  Example:
ª  In a group of people, how many are required to have a 50%

chance of two people having the same birthday?
ª  Perhaps surprisingly the answer is only 23 even if there are

365 days on a year.
ª  If there are more then 60 people the probability for a

collision is almost 100%

13

SHA-1 weakness

ª  In 2005 Chinese cryptographer Xiaoyun Wang found
collision-finding attacks that require only 263 operations,
rather than the 280 operations stated by the birthday
attack. Such an attack is feasible for a very well-funded
adversary.

ª  Consequently, for many applications one needs to look
for stronger hash functions. The SHA-2 family, including
SHA-224, SHA-256 and SHA-512 already exists, but they
are based on similar ideas as SHA-1.

ª  It seems that new ideas are needed in the design of hash
functions, as well as careful analysis of what properties
are needed for various applications.

14

SHA-3, the new kid in the block

ª On November 2, 2007, NIST announced a public
competition to develop a new cryptographic hash
algorithm.

ª  Deadline for proposals was October 31, 2008.14
candidates selected for 2nd round in 2009, 6 for 3rd
round in 2010.

ª  The winner, Keccak, announced on October 2, 2012.
ª  Keccak is now officially SHA-3; see www.nist.gov/

hash-competition.

15

Keyed Hash Functions as MACs

ª want a MAC based on a hash function
ª because hash functions are generally faster
ª crypto hash function code is widely available

ª hash includes a key along with message
ª original proposal:

KeyedHash = Hash(Key|Message)
ª some weaknesses were found with this

ª eventually led to development of HMAC

16

HMAC Design Objectives

ª use, without modifications, hash functions
ª allow for easy replaceability of embedded hash

function
ª preserve original performance of hash function

without significant degradation
ª use and handle keys in a simple way.
ª have well understood cryptographic analysis of

authentication mechanism strength
17

HMAC
ª  specified as Internet standard RFC2104
ª  uses hash function on the message:

HMACK(M)= Hash[(K+ XOR opad) ||
 Hash[(K+ XOR ipad) || M)]]

ª where K+ is the key padded out to size
ª  opad, ipad are specified padding constants

ª  overhead is just 3 more hash calculations than the
message needs alone

ª  any hash function can be used
ª  eg. MD5, SHA-1, RIPEMD-160, Whirlpool

18

HMAC
Overview

19

HMAC Security

ª proved security of HMAC relates to that
of the underlying hash algorithm

ª attacking HMAC requires either:
ª brute force attack on key used
ª birthday attack (but since keyed, would

need to observe a very large number of
messages)

ª choose hash function used based on
speed verses security constraints

20

Private-Key Cryptography
(revisited)

ª traditional private/secret/single key
cryptography uses one key

ª shared by both sender and receiver
ª if this key is disclosed communications are

compromised
ª also is symmetric, parties are equal
ª hence does not protect sender from receiver

forging a message & claiming is sent by
sender

21

Public-Key Cryptography
the new idea

ª probably most significant advance in the 3000
year history of cryptography

ª uses two keys – a public & a private key
ª asymmetric since parties are not equal
ª uses clever application of number theoretic

concepts to function
ª complements rather than replaces private

key crypto

22

Why Public-Key
Cryptography?

ª developed to address two key issues:
ª key distribution – how to have secure

communications in general without having to trust a
KDC with your key

ª digital signatures – how to verify a message comes
intact from the claimed sender

ª public invention due to Whitfield Diffie & Martin
Hellman at Stanford Uni in 1976
ª known earlier in classified community

23

Public-Key Cryptography

ª  public-key/two-key/asymmetric cryptography
involves the use of two keys:
ª  a public-key, which may be known by anybody, and can be

used to encrypt messages, and verify signatures
ª  a related private-key, known only to the recipient, used to

decrypt messages, and sign (create) signatures
ª  infeasible to determine private key from public
ª  is asymmetric because

ª  those who encrypt messages or verify signatures cannot
decrypt messages or create signatures

24

25

Public-Key Cryptography
Principles

ª The use of two keys has consequences in:
key distribution, confidentiality and
authentication.

ª The scheme has six ingredients
ª Plaintext
ª Encryption algorithm
ª Public and private key
ª Cipher text
ª Decryption algorithm

26

Encryption using
Public-Key System

27

Authentication using
Public-Key System

28

Applications for
Public-Key Cryptosystems

ª Three categories:
ª Encryption/decryption: The sender

encrypts a message with the recipient’s
public key.

ª Digital signature: The sender ”signs” a
message with its private key.

ª Key exchange: Two sides cooperate two
exchange a session key.

29

Requirements for
Public-Key Cryptography

1.  Computationally easy for a party B to
generate a pair (public key KUb, private
key KRb)

2.  Easy for sender to generate cipher text:

3.  Easy for the receiver to decrypt cipher text
using private key:

)(MEC KUb=

)]([)(MEDCDM KUbKRbKRb ==

30

Requirements for
Public-Key Cryptography

4.  Computationally infeasible to determine
private key (KRb) knowing public key (KUb)

5.  Computationally infeasible to recover
message M, knowing KUb and cipher text C

6.  Either of the two keys can be used for
encryption, with the other used for
decryption:

)]([)]([MEDMEDM KRbKUbKUbKRb ==

31

Public-Key Cryptographic
Algorithms

ª RSA and Diffie-Hellman
ª RSA - Ron Rivest, Adi Shamir and Len Adleman at

MIT, in 1977.
ª RSA is a block cipher
ª The most widely implemented

ª Diffie-Hellman
ª Exchange a secret key securely
ª Compute discrete logarithms

32

The RSA Algorithm –
Key Generation

1.  Select p,q p and q both prime
2.  Calculate n = p x q
3.  Calculate
4.  Select integer e
5.  Calculate d
6.  Public Key KU = {e,n}
7.  Private key KR = {d,n}

)1)(1()(−−=Φ qpn
gcd(Φ(n),e) =1;1< e <Φ(n)

)(mod1 ned Φ= −

33

Example of RSA Algorithm

34

The RSA Algorithm -
Encryption

ª Plain text: M<n

ª Cipher text: C = Me (mod n)

35

The RSA Algorithm -
Decryption

ª Cipher text: C

ª Plain text: M = Cd (mod n)

36

Diffie-Hellman Key Exchange

37

Other Public-Key
Cryptographic Algorithms

ª Digital Signature Standard (DSS)
ª Makes use of the SHA-1
ª Not for encryption or key exchange

ª Elliptic-Curve Cryptography (ECC)
ª Good for smaller bit size
ª Low confidence level, compared with RSA
ª Very complex

ª ElGamal
ª an asymmetric key encryption algorithm based on

the Diffie–Hellman key exchange

38

Authentication

ª  Requirements - must be able to verify
that:
1.  Message came from apparent source or

author,
2.  Contents have not been altered,
3.  Sometimes, it was sent at a certain time

or sequence.

ª  Protection against active attack
(falsification of data and transactions)

39

Approaches to Message
Authentication

ª Authentication Using Conventional
Encryption
ª Only the sender and receiver should share a key

ª Message Authentication without Message
Encryption
ª An authentication tag is generated and appended

to each message
ª Message Authentication Code

ª Calculate the MAC as a function of the message
and the key. MAC = F(K, M)

40

Authentication using a
Message Authentication Code

41

One-way HASH function

42

One-way HASH function
 ª Secret value is added before the hash

and removed before transmission.

43

Key Management
Public-Key Certificate Use

