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Numerical Regression 



Numerical Regression 

•  A common type of machine learning task is when we 
have numerical features… 

•  … and want to predict a continuous variable 
(number) 

•  Typical tasks are to estimate: 
–  The price of a new product based on existing products 
–  Stock market predictions 
–  … 



Price Models 

•  One algorithm that is very effective for numerical 
regression is K-nearest neighbor 

•  In K-nearest Neighbor (KNN), all attributes must be 
numeric 

•  Nominal attributes can be translated to numeric in a 
pre-processing step 

•  If we have two categories, harddrive and SSD, we 
can use 0 for harddrive and 1 for SSD 



Important variables 

•  When building price models it is important to 
determine which variables that affect the price 

•  Example: “is processor speed a good indicator for 
laptop price?” 

•  Variables such as RAM and screen size likely has 
large impact on the price 

•  If the laptop comes bundled with free software or not 
probably have low impact on the price 



Example dataset 

•  We will use a simple dataset where the task is to predict the 
price of a TV based on: 
–  Screen size in inches 
–  Screen type {Full HD, 4K, OLED} 
–  Customer rating 

•  The screen type variable is nominal and must be translated to 
a numerical variable 

•  The following translation is used: 
–  1: Full HD 
–  2: 4K 
–  3: OLED  



Example dataset 
ScreenSize ScreenType Rating Price 

55 2 3.9 5495 

55 2 3.8 5990 

50 1 4.5 6495 

55 2 4.4 6990 

58 1 4.0 7490 

50 2 4.4 7590 

55 2 4.2 7990 

55 1 4.5 7990 

55 1 4.3 7990 

55 2 4.1 7995 

… … … … 

55 3 4.7 16790 

55 3 4.8 23990 

55 3 4.3 24790 

55 3 4.0 29990 



K-nearest neighbor 

•  What would you do if you manually shall guess the 
price of a new TV? 

•  A common approach is to find TVs similar to the one 
you shall guess the price for, 

•  , …then take an average of the prices of the similar 
TVs 

•  Now you have a reasonably good guess! 
•  This is exactly how KNN works! 



K-nearest neighbor 

•  In KNN, you search for the k most similar examples in the 
training dataset 

•  A k value between 3 and 5 is quite common, but you can 
experiment with other k values 

•  The predicted price is then the average price for the k 
examples 

•  Using k = 1 only picks the nearest example, but that is rarely 
useful 

•  Some items are cheaper or more expensive than they should 
be, and using a k larger than 1 reduces the effect of this 



Example data 
ScreenSize 

47 

49 

50 

55 

58 

1 2 3 4 5 
Rating 



Example classification, k = 3 
ScreenSize 

47 

49 

50 

55 

58 

1 2 3 4 5 
Rating 

5690 

5990 

5890 

Price for the new example is: 
(5690 + 5990 + 5890) / 3 = 5857  



Similarity 

•  In KNN, Euclidean distance is commonly used to 
calculate the distance between examples: 



Training and Classification 

•  No actual training is done in KNN 
•  It simply stores the training data in the main memory or a 

data base 
•  All computation is done when classifying an example 
•  The drawback is that classification is slower compared to 

other algorithms that train a prediction model 
•  An advantage is that we can add more training data when 

the system is up and running, which many other 
algorithms don’t support 



Introducing weights 

•  So far, the algorithm calculates the average of the k 
nearest neighbors 

•  Depending on how the data is distributed, some 
neighbors can be very far from the example while 
others are very close 

•  To account for this, we can introduce a weight for 
each neighbor based on the distance 

•  A weighted average price is then calculated 
•  We will look at two ways of weighting neighbors: 



Inverse Function 

•  The inverse function returns a value of 1 divided by the 
distance 

•  The problem is that very small distances can lead to very high 
or infinite weights due to how the inverse function works 

•  To get around this, we add a small number to the distance 
before inverting it: 



Gaussian Function 

•  The second way is to use the Gaussian function, 
also known as a bell curve 

•  The weight is 1 when the distance is 0, and 
gradually declines as the distance increased. 

•  The weight will however never fall to 0, so we will 
never have problems with 0 weights 

•  The Gaussian function looks like this: 



Gaussian Function 



Adding weights to KNN 

•  The price for each example is multiplied by the 
weight 
–  Using the distance between the training examples and the 

example we want to classify 

•  The average price is then divided by the sum of the 
weights 



Testing it 

•  We use a KNN with k = 5 and the TV dataset (attributes 
ScreenSize, ScreenType and Rating). 

•  The task is to find a price for a new TV where the 
attributes are known: 
–  {ScreenSize = 55, ScreenType = 1, Rating = 4.0} 

•  Result: 



Laptop dataset 

•  A second dataset has been generated from laptops 
sold at Elgiganten.se 

•  The following attributes are used: 
–  ScreenSize (13.3”) 
–  ProcessorSpeed (2.10) 
–  Cores (2) 
–  RAM (4) 
–  StorageType (0 for harddrive, 1 for SSD) 
–  StorageSize (256) 
 



Laptop dataset 

•  A part of the laptop dataset looks like this: 

Screen 
Size 

Processor 
Speed 

Cores RAM Storage 
Type 

Storage 
Size 

Price 

14 1.60 2 4 1 128 3495 

15.6 1.60 2 4 0 500 3495 

10.1 1.44 4 2 1 64 3695 

15.6 2.10 2 8 1 128 3695 

15.6 1.70 2 4 1 128 3995 

15.6 2.00 4 4 1 128 3995 

15.6 2.40 2 8 1 256 4490 

13.3 1.90 2 4 0 500 5495 

14 2.40 2 4 1 356 5996 



Testing it 

•  Task: find the price of the example: 
–  {15.6, 2, 2, 4, 1, 128} 

•  Result: 



Heterogeneous Variables 

•  Consider the TV dataset 
•  The values for screen size (47-58”) are much higher 

than the values for rating (1-5) 
•  Therefore, the screen size attribute has much higher 

impact on the distance than the rating attribute 
•  To get around this we can normalize attributes to be 

of similar range, for example between 0 and 1 



When to use KNN 

•  The major drawback of KNN is that classification is 
computationally expensive 

•  It also has high memory requirements since no model is 
built from the training data 

•  An advantage is that new training examples can be 
added after the initial training 

•  It is also easy to interpret how the algorithm makes its 
decisions 

•  KNNs are best used when you have numerical inputs and 
the slow classification time is not a problem 



Classification Tasks 

•  KNN can also be used if we have categories 
•  We then return the most frequent category among 

the k nearest neighbors 
•  The attributes must be numeric, or translated to 

numbers 
–  A = 1, B = 2, C = 3, … 
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