
Dr. Johan Hagelbäck

johan.hagelback@lnu.se

http://aiguy.org

Numerical Regression

Numerical Regression

•  A common type of machine learning task is when we
have numerical features…

•  … and want to predict a continuous variable
(number)

•  Typical tasks are to estimate:
–  The price of a new product based on existing products
–  Stock market predictions
–  …

Price Models

•  One algorithm that is very effective for numerical
regression is K-nearest neighbor

•  In K-nearest Neighbor (KNN), all attributes must be
numeric

•  Nominal attributes can be translated to numeric in a
pre-processing step

•  If we have two categories, harddrive and SSD, we
can use 0 for harddrive and 1 for SSD

Important variables

•  When building price models it is important to
determine which variables that affect the price

•  Example: “is processor speed a good indicator for
laptop price?”

•  Variables such as RAM and screen size likely has
large impact on the price

•  If the laptop comes bundled with free software or not
probably have low impact on the price

Example dataset

•  We will use a simple dataset where the task is to predict the
price of a TV based on:
–  Screen size in inches
–  Screen type {Full HD, 4K, OLED}
–  Customer rating

•  The screen type variable is nominal and must be translated to
a numerical variable

•  The following translation is used:
–  1: Full HD
–  2: 4K
–  3: OLED

Example dataset
ScreenSize ScreenType Rating Price

55 2 3.9 5495

55 2 3.8 5990

50 1 4.5 6495

55 2 4.4 6990

58 1 4.0 7490

50 2 4.4 7590

55 2 4.2 7990

55 1 4.5 7990

55 1 4.3 7990

55 2 4.1 7995

… … … …

55 3 4.7 16790

55 3 4.8 23990

55 3 4.3 24790

55 3 4.0 29990

K-nearest neighbor

•  What would you do if you manually shall guess the
price of a new TV?

•  A common approach is to find TVs similar to the one
you shall guess the price for,

•  , …then take an average of the prices of the similar
TVs

•  Now you have a reasonably good guess!
•  This is exactly how KNN works!

K-nearest neighbor

•  In KNN, you search for the k most similar examples in the
training dataset

•  A k value between 3 and 5 is quite common, but you can
experiment with other k values

•  The predicted price is then the average price for the k
examples

•  Using k = 1 only picks the nearest example, but that is rarely
useful

•  Some items are cheaper or more expensive than they should
be, and using a k larger than 1 reduces the effect of this

Example data
ScreenSize

47

49

50

55

58

1 2 3 4 5
Rating

Example classification, k = 3
ScreenSize

47

49

50

55

58

1 2 3 4 5
Rating

5690

5990

5890

Price for the new example is:
(5690 + 5990 + 5890) / 3 = 5857

Similarity

•  In KNN, Euclidean distance is commonly used to
calculate the distance between examples:

Training and Classification

•  No actual training is done in KNN
•  It simply stores the training data in the main memory or a

data base
•  All computation is done when classifying an example
•  The drawback is that classification is slower compared to

other algorithms that train a prediction model
•  An advantage is that we can add more training data when

the system is up and running, which many other
algorithms don’t support

Introducing weights

•  So far, the algorithm calculates the average of the k
nearest neighbors

•  Depending on how the data is distributed, some
neighbors can be very far from the example while
others are very close

•  To account for this, we can introduce a weight for
each neighbor based on the distance

•  A weighted average price is then calculated
•  We will look at two ways of weighting neighbors:

Inverse Function

•  The inverse function returns a value of 1 divided by the
distance

•  The problem is that very small distances can lead to very high
or infinite weights due to how the inverse function works

•  To get around this, we add a small number to the distance
before inverting it:

Gaussian Function

•  The second way is to use the Gaussian function,
also known as a bell curve

•  The weight is 1 when the distance is 0, and
gradually declines as the distance increased.

•  The weight will however never fall to 0, so we will
never have problems with 0 weights

•  The Gaussian function looks like this:

Gaussian Function

Adding weights to KNN

•  The price for each example is multiplied by the
weight
–  Using the distance between the training examples and the

example we want to classify

•  The average price is then divided by the sum of the
weights

Testing it

•  We use a KNN with k = 5 and the TV dataset (attributes
ScreenSize, ScreenType and Rating).

•  The task is to find a price for a new TV where the
attributes are known:
–  {ScreenSize = 55, ScreenType = 1, Rating = 4.0}

•  Result:

Laptop dataset

•  A second dataset has been generated from laptops
sold at Elgiganten.se

•  The following attributes are used:
–  ScreenSize (13.3”)
–  ProcessorSpeed (2.10)
–  Cores (2)
–  RAM (4)
–  StorageType (0 for harddrive, 1 for SSD)
–  StorageSize (256)

Laptop dataset

•  A part of the laptop dataset looks like this:

Screen
Size

Processor
Speed

Cores RAM Storage
Type

Storage
Size

Price

14 1.60 2 4 1 128 3495

15.6 1.60 2 4 0 500 3495

10.1 1.44 4 2 1 64 3695

15.6 2.10 2 8 1 128 3695

15.6 1.70 2 4 1 128 3995

15.6 2.00 4 4 1 128 3995

15.6 2.40 2 8 1 256 4490

13.3 1.90 2 4 0 500 5495

14 2.40 2 4 1 356 5996

Testing it

•  Task: find the price of the example:
–  {15.6, 2, 2, 4, 1, 128}

•  Result:

Heterogeneous Variables

•  Consider the TV dataset
•  The values for screen size (47-58”) are much higher

than the values for rating (1-5)
•  Therefore, the screen size attribute has much higher

impact on the distance than the rating attribute
•  To get around this we can normalize attributes to be

of similar range, for example between 0 and 1

When to use KNN

•  The major drawback of KNN is that classification is
computationally expensive

•  It also has high memory requirements since no model is
built from the training data

•  An advantage is that new training examples can be
added after the initial training

•  It is also easy to interpret how the algorithm makes its
decisions

•  KNNs are best used when you have numerical inputs and
the slow classification time is not a problem

Classification Tasks

•  KNN can also be used if we have categories
•  We then return the most frequent category among

the k nearest neighbors
•  The attributes must be numeric, or translated to

numbers
–  A = 1, B = 2, C = 3, …

Dr. Johan Hagelbäck

johan.hagelback@lnu.se

http://aiguy.org

Numerical Regression

