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Graphics

◮ Compared to Swing, JavaFX is far better at handling graphics.
◮ Two of the reasons for this is Prism and Glass.

◮ Prism is a hardware accelerated graphics pipeline.
◮ Glass is the new windowing toolkit.

◮ Underneath Prism, either DirectX or OpenGL is used (and
therefore hardware accelerated).

◮ If no compatible hardware is found, Java2D will do the
rendering.

◮ Glass is using parts of the native platform for windowing, but
also has its own part.

◮ The possibility to interact is greater than before.

School of Computer Science, Physics and Mathematics

Essential JavaFX 2(39)

Quantum Toolkit

◮ The Prism and Glass parts are not directly reachable through
JavaFX.

◮ Instead, the Quantum Toolkit is the public part of graphics in
JavaFX.

◮ In most cases, though, this is used via the scene graph of an
application.

◮ Since the Media and Web engines are implemented
alongside Prism and Glass, it is possible to create both
desktop and web applications using the Quantum Toolkit.
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Images

◮ As discussed in the previous lecture, images are displayed as
a two part action.

◮ The image itself is loaded into an object of Image type.
◮ The part of an image to be seen is then defined by a viewport

for an ImageView.
◮ It is also possible to transform the image, either directly using

methods to the ImageView or through separate classes.
◮ Translation – changing the position of the image.
◮ Rotating – along a pivot.
◮ Scaling
◮ Shearing – moves just one axis.

◮ Notice that JavaFX supports this as both 2D and 3D functions.
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Translation

◮ The first example will show an translation of position.
◮ Using the methods setTranslateX and setTranslateY it is

possible to decide the position of an image.
◮ This can be used to animate an image, but we will look at

better ways.
◮ The example, as well as several others in this lecture, will use

a sprite map.
◮ An image with several smaller images where each image is

part of a movement.
◮ Popular during the 80s and 90s for 2D games.

◮ The sprites are shamelessly taken from the game Super The
Empire Strikes Back for the Super Nintendo.
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The sprite map
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The code
// imports omitted

public class JavaFX_L3_Sprite1 extends Application {

@Override

public void start(Stage primaryStage) {

final Image image = new Image(getClass()

.getResourceAsStream("lukeskywalker.png"));

final ImageView sprite = new ImageView(image);

sprite.setViewport(new Rectangle2D(0, 0, 50, 50));

sprite.setFitHeight(100);

sprite.setPreserveRatio(true);

sprite.setTranslateX(100);

sprite.setTranslateY(100);

Scene theScene = new Scene(new Group(sprite), 600, 400);

primaryStage.setTitle("First Sprite");

primaryStage.setScene(theScene);

primaryStage.show();

}

public static void main(String[] args) {

launch(args);
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Rotation

◮ For rotation, it is best to use the class Rotate.
◮ It takes three parameters:

◮ The first is the number of degrees to rotate.
◮ The second and third are the anchor point.

◮ The anchor point defines the position around which the
rotation should take place.

◮ The transformations are then added, like effects, to the image
view.
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final Image image = new Image(getClass().getResourceAsStream("lukeskywalker.png"));

final ImageView sprite = new ImageView(image);

final ImageView secondSprite = new ImageView(image);

sprite.setViewport(new Rectangle2D(80, 635, 75, 75));

sprite.setFitHeight(100);

sprite.setPreserveRatio(true);

sprite.setTranslateX(100);

sprite.setTranslateY(100);

secondSprite.setViewport(new Rectangle2D(0, 110, 45, 50));

secondSprite.setFitHeight(100);

secondSprite.setPreserveRatio(true);

secondSprite.setTranslateX(200);

secondSprite.setTranslateY(100);

Rotate rotator1 = new Rotate(30, 50, 30);

sprite.getTransforms().add(rotator1);

Rotate rotator2 = new Rotate(90, 0, 0);

secondSprite.getTransforms().add(rotator2);

HBox layout = new HBox();

layout.getChildren().addAll(sprite, secondSprite);

Scene theScene = new Scene(layout, 600, 400);

primaryStage.setTitle("Rotating Sprites");

primaryStage.setScene(theScene);

primaryStage.show();
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Animations

◮ There are a number of built in animation classes in JavaFX.
◮ This in contrast to Swing, where this was basically left to the

programmer.

◮ The animation functionality lies in the Animation package,
with several classes.

◮ Two high level categories can be seen:
◮ Transitions
◮ Timeline animation

◮ These can be further divided into different classes.
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Transitions

◮ The main idea behind transitions is to have a change of state
over time.

◮ This is done via an internal timeline, in contrast to other
animations.

◮ The Transition class is abstract and has several concrete
sub classes.

◮ FadeTransistion
◮ RotateTransition
◮ PathTransition

◮ All of them work on Nodes, so most elements can be used.
◮ Images, text and so on.

◮ All transitions set a duration for the internal timeline.
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FadeTransistion

◮ The FadeTransistion makes it possible to fade a node.
◮ For the node to fade, the start and end values are set.

◮ A double going from 0.0 (invisible) to 1.0 (fully visible).
◮ A duration is set for the entire fade, but also an increment for

each step in the fade.
◮ This is also a double from 0.0 to 1.0.

◮ It is also possible to set it to cycle and to reverse when at the
end.

◮ When the transition is set, the play() method will start the
animation.
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In code

final Image theEmperor = new Image(getClass()

.getResourceAsStream("darthsidious.png"));

final ImageView theImperialView = new ImageView(theEmperor);

FadeTransition fadeToBlack =

new FadeTransition(Duration.millis(4000), theImperialView);

fadeToBlack.setFromValue(0.0);

fadeToBlack.setToValue(1.0);

fadeToBlack.setByValue(0.3);

fadeToBlack.setCycleCount(Animation.INDEFINITE);

fadeToBlack.setAutoReverse(true);

fadeToBlack.play();

Scene scene = new Scene(new Group(theImperialView), 400, 600);

primaryStage.setTitle("Wipe the out. All of them!");

primaryStage.setScene(scene);

primaryStage.show();
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RotateTransition

◮ We previously saw how it was possible to rotate an image (or
any other node) using the Rotate class.

◮ It is possible to add a rotation animation by repeatedly
updating the values, but it is easier to use the
RotateTransition class.

◮ The object of RotateTransition is given values for:
◮ Angle – the complete change from the initial state, 360 for a

full circle (obviously).
◮ A cycle count for the number of times it needs to be done.

◮ In the example we also set the interpolation.
◮ This can be done using either a separate class or as a method

to the transition.
◮ It decides the start and end movement of the transition.
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The code

final Image itsMe = new Image(getClass()

.getResourceAsStream("jag.png"));

final ImageView showMe = new ImageView(itsMe);

RotateTransition snurr =

new RotateTransition(Duration.millis(3000), showMe);

snurr.setByAngle(360);

snurr.setCycleCount(Animation.INDEFINITE);

snurr.setAutoReverse(true);

snurr.setInterpolator(Interpolator.EASE_BOTH);

snurr.play();

Scene scene = new Scene(new Group(showMe), 500, 400);

primaryStage.setTitle("Hello World!");

primaryStage.setScene(scene);

primaryStage.show();
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Putting it together

◮ To make an even more controlled animation it is also
possible to inherit from Transition.

◮ In this case we will be sending an ImageView to the
transition class.

◮ Called SpriteAnim since we are animating sprites.

◮ In our sprite animation class we will shift the viewport of the
ImageView to simulate movement.

◮ The main class will still set and populate the original image
and view.

◮ This might not be the “best” way, but still quite efficient.

◮ Animation is set to infinite, but it is possible to start and stop
as well as pause an animation in code.
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The interpolate method

◮ In our sprite animation class it is vital to override the
interpolate method.

◮ This is the method that will be executed for every new frame.
◮ It is called more often than the duration is set for, though, so

it needs to be guarded.
◮ This is because this method should be called for every screen

redraw.
◮ In our example we use the input value to the method for

calculating the frame number.
◮ If it has changed from previous call, that is – the duration is at

end – then it will update.

◮ The interpolation type is set to LINEAR since we do not want
it to slow down between changes.
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The SpriteAnim class
public class SpriteAnim extends Transition {

ImageView spriteView;

int x_coord, y_coord, width, height;

int count=0;

int lastIndex;

SpriteAnim(ImageView theIV, int x, int y, int w, int h, int l){

spriteView = theIV;

x_coord = x; y_coord = y; width = w; height = h;

count = l;

setCycleDuration(Duration.millis(1000));

setInterpolator(Interpolator.LINEAR);

}

@Override

protected void interpolate(double d) {

final int index = Math.min((int) Math.floor(d*count),count-1);

if(index != lastIndex)

{

if(x_coord < width*(count-1))

x_coord = x_coord + width;

else

x_coord=0;

spriteView.setViewport(

new Rectangle2D(x_coord, y_coord, width, height));

lastIndex = index;

}

}

}
School of Computer Science, Physics and Mathematics

Essential JavaFX 22(39)

The main class

public void start(Stage primaryStage) {

final Image theImage = new Image(getClass()

.getResourceAsStream("lukeskywalker.png"));

final ImageView theView = new ImageView(theImage);

theView.setViewport(new Rectangle2D(0, 50, 50, 50));

theView.setFitHeight(100);

theView.setPreserveRatio(true);

final Animation anim = new SpriteAnim(theView, 0, 50, 50, 50, 9);

anim.setCycleCount(Animation.INDEFINITE);

anim.play();

Scene scene = new Scene(new Group(theView), 300, 250);

primaryStage.setTitle("Sprite 2");

primaryStage.setScene(scene);

primaryStage.show();

}
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PathTransition

◮ It is also possible to set up a transition over a path.
◮ The path will then be defined by using a number of path

classes like MoveTo, LineTo and CubicCurveTo.
◮ In the example we only set a path and let our node move

over it, put it is possible to make it follow a mouse click, a
key press or anything else.

◮ Also notice that the previous transition is still in effect.
◮ When the path is set, a PathTransition object must be

created taking the path as a parameter.
◮ As well as the node to animate.

◮ For the transition the orientation is set, in this case to NONE

which means that it will only follow the path.
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The code

final Image theImage = new Image(getClass().getResourceAsStream("lukeskywalker.png"));

final ImageView theView = new ImageView(theImage);

theView.setViewport(new Rectangle2D(0, 50, 50, 50));

theView.setFitHeight(100);

theView.setPreserveRatio(true);

final Animation anim = new SpriteAnim(theView, 0, 50, 50, 50, 9);

anim.setCycleCount(Animation.INDEFINITE);

anim.play();

PathTransition thePath = new PathTransition();

Path path = PathBuilder.create()

.elements(new MoveTo(50, 60),

new LineTo(600, 60)

).build();

thePath = PathTransitionBuilder.create()

.duration(Duration.seconds(5))

.path(path)

.node(theView)

.orientation(OrientationType.NONE)

.cycleCount(Timeline.INDEFINITE)

.autoReverse(true)

.build();

thePath.play();

School of Computer Science, Physics and Mathematics

Essential JavaFX 26(39)

In graphics

School of Computer Science, Physics and Mathematics

Essential JavaFX 27(39)

Another example

◮ In the following a more complex path is set.
◮ Borrowed from the Internet. . .

◮ This example sets the orientation to
ORTHOGONAL_TO_TANGENT which will make the image turn at
curves.

◮ Also notice how we set a background by applying a style to
the root.

◮ This style sets the image to stretch to fill the background.
◮ It also centres it.
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The code

public void start(Stage primaryStage) {

PathTransition pathTransition = new PathTransition();

Path path = PathBuilder.create()

.elements(

new MoveTo(50, 50),

new LineTo(800, 400),

new LineTo(50, 600),

new CubicCurveTo(580, 0, 580, 120, 200, 120),

new CubicCurveTo(0, 120, 0, 240, 380, 240)

).build();

path.setVisible(false);

ImageView tie = new ImageView(new Image(getClass().getResourceAsStream("tiefighter.png")));

tie.setFitWidth(150.0);

tie.setPreserveRatio(true);

pathTransition = PathTransitionBuilder.create()

.duration(Duration.seconds(10))

.path(path)

.node(tie)

.orientation(OrientationType.ORTHOGONAL_TO_TANGENT)

.cycleCount(Timeline.INDEFINITE)

.autoReverse(true)

.build();
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The code, cont.

primaryStage.setTitle("TIE Fighter");

StackPane root = new StackPane();

String image = getClass().getResource("deathstar.jpg").toExternalForm();

root.setStyle("-fx-background-image: url(’" +

image

+ "’); -fx-background-position: center center; -fx-background-repeat: stretch;");

root.setAlignment(Pos.TOP_LEFT);

root.getChildren().addAll(tie, path);

primaryStage.setScene(new Scene(root, 1024, 768));

primaryStage.show();

pathTransition.play();
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Timeline animations

◮ The other way of creating animations is to use the Timeline

class.
◮ It works similar to cartoons, you define key frames between

which the node moves.
◮ In order for this to work, the properties of a node is update.

◮ Properties are special values that update using binding.
◮ We will return to these at a later lecture.

◮ The methods seen before for cycles and repeat are available
for timelines as well.

◮ It is also possible to pause and re-start animations, making
them good for sprites as well.

School of Computer Science, Physics and Mathematics

Essential JavaFX 32(39)



Key frames and values

◮ When defining a timeline, two things need to be defined:
◮ Key frames – each frame defines a time for the frame.
◮ Key values – the value for the frame to update.

◮ Any number of frames can be defined with different values.
◮ JavaFX calculates the change in between.
◮ In the example, only the x coordinate is changed, but any

other property can be changed as well.
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The code

public void start(Stage primaryStage) {

final Image theXwing = new Image(getClass().getResourceAsStream("xwing.png"));

final ImageView xwingShow = new ImageView(theXwing);

Timeline time = new Timeline();

time.setCycleCount(Animation.INDEFINITE);

time.setAutoReverse(true);

time.getKeyFrames().addAll(

new KeyFrame(Duration.ZERO,

new KeyValue(xwingShow.translateXProperty(), -500)),

new KeyFrame(Duration.millis(2000),

new KeyValue(xwingShow.translateXProperty(), 1000)));

Scene scene = new Scene(new Group(xwingShow), 1000, 500);

time.play();

primaryStage.setTitle("X-Wing");

primaryStage.setScene(scene);

primaryStage.show();

}
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More graphics capabilities

◮ One of the more prominent additions to HTML5 is the
canvas.

◮ In essence a drawing area defined in HTML.
◮ Shapes and images are drawn using JavaScript.

◮ One of the goals for JavaFX is to be a major player when it
comes to Rich Internet Applications.

◮ To make the transition from HTML to JavaFX easier (and more
worthwhile), JavaFX 2.2 added its own canvas.

◮ Very much like the HTML5 version.
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Drawing

◮ The usage of the JavaFX canvas is similar to that of HTML5.
◮ Two steps are needed:

◮ First the Canvas is defined with size.
◮ Then a GraphicsContext is extracted from the canvas.

◮ This is exactly how it is done in HTML5 as well.
◮ When the context is extracted, it is possible to use drawing

methods on it.
◮ In large they follow the same names as for HTML5.

◮ The example shows the parts that were possible to copy
directly from an HTML5 lecture in another course.
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The code
final Canvas theCanvas = new Canvas(500, 375);

final GraphicsContext theContext = theCanvas.getGraphicsContext2D();

for (double x = 0.5; x < 500; x += 10) {

theContext.moveTo(x, 0);

theContext.lineTo(x, 375);

}

for (double y = 0.5; y < 375; y += 10) {

theContext.moveTo(0, y);

theContext.lineTo(500, y);

}

theContext.stroke();

theContext.beginPath();

theContext.moveTo(0, 40);

// lines omitted

theContext.lineTo(60, 375);

theContext.lineTo(55, 370);

Group root = new Group();

root.getChildren().add(theCanvas);

Scene scene = new Scene(root, 500, 375);

primaryStage.setTitle("See my canvas");

primaryStage.setScene(scene);

primaryStage.show();
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More?

◮ There is plenty more to learn about animation in JavaFX.
◮ With this, however, you will be well on your way to master it.
◮ There is plenty of additional information on the Internet,

though not as much as one would like.
◮ This lecture has only studied static images and animations

based on images – further down the lecture series, we will be
looking at movies as well!
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