
Essential JavaFX
Graphics

Tobias Andersson Gidlund

tobias.andersson.gidlund@lnu.se

November 22, 2012

School of Computer Science, Physics and Mathematics

Essential JavaFX 1(39)

Graphics

◮ Compared to Swing, JavaFX is far better at handling graphics.
◮ Two of the reasons for this is Prism and Glass.

◮ Prism is a hardware accelerated graphics pipeline.
◮ Glass is the new windowing toolkit.

◮ Underneath Prism, either DirectX or OpenGL is used (and
therefore hardware accelerated).

◮ If no compatible hardware is found, Java2D will do the
rendering.

◮ Glass is using parts of the native platform for windowing, but
also has its own part.

◮ The possibility to interact is greater than before.

School of Computer Science, Physics and Mathematics

Essential JavaFX 2(39)

Quantum Toolkit

◮ The Prism and Glass parts are not directly reachable through
JavaFX.

◮ Instead, the Quantum Toolkit is the public part of graphics in
JavaFX.

◮ In most cases, though, this is used via the scene graph of an
application.

◮ Since the Media and Web engines are implemented
alongside Prism and Glass, it is possible to create both
desktop and web applications using the Quantum Toolkit.

School of Computer Science, Physics and Mathematics

Essential JavaFX 3(39)

Images

◮ As discussed in the previous lecture, images are displayed as
a two part action.

◮ The image itself is loaded into an object of Image type.
◮ The part of an image to be seen is then defined by a viewport

for an ImageView.
◮ It is also possible to transform the image, either directly using

methods to the ImageView or through separate classes.
◮ Translation – changing the position of the image.
◮ Rotating – along a pivot.
◮ Scaling
◮ Shearing – moves just one axis.

◮ Notice that JavaFX supports this as both 2D and 3D functions.

School of Computer Science, Physics and Mathematics

Essential JavaFX 4(39)



Translation

◮ The first example will show an translation of position.
◮ Using the methods setTranslateX and setTranslateY it is

possible to decide the position of an image.
◮ This can be used to animate an image, but we will look at

better ways.
◮ The example, as well as several others in this lecture, will use

a sprite map.
◮ An image with several smaller images where each image is

part of a movement.
◮ Popular during the 80s and 90s for 2D games.

◮ The sprites are shamelessly taken from the game Super The
Empire Strikes Back for the Super Nintendo.

School of Computer Science, Physics and Mathematics

Essential JavaFX 5(39)

The sprite map

School of Computer Science, Physics and Mathematics

Essential JavaFX 6(39)

The code
// imports omitted

public class JavaFX_L3_Sprite1 extends Application {

@Override

public void start(Stage primaryStage) {

final Image image = new Image(getClass()

.getResourceAsStream("lukeskywalker.png"));

final ImageView sprite = new ImageView(image);

sprite.setViewport(new Rectangle2D(0, 0, 50, 50));

sprite.setFitHeight(100);

sprite.setPreserveRatio(true);

sprite.setTranslateX(100);

sprite.setTranslateY(100);

Scene theScene = new Scene(new Group(sprite), 600, 400);

primaryStage.setTitle("First Sprite");

primaryStage.setScene(theScene);

primaryStage.show();

}

public static void main(String[] args) {

launch(args);

School of Computer Science, Physics and Mathematics

Essential JavaFX 7(39)

In graphics

School of Computer Science, Physics and Mathematics

Essential JavaFX 8(39)



Rotation

◮ For rotation, it is best to use the class Rotate.
◮ It takes three parameters:

◮ The first is the number of degrees to rotate.
◮ The second and third are the anchor point.

◮ The anchor point defines the position around which the
rotation should take place.

◮ The transformations are then added, like effects, to the image
view.

School of Computer Science, Physics and Mathematics

Essential JavaFX 9(39)

final Image image = new Image(getClass().getResourceAsStream("lukeskywalker.png"));

final ImageView sprite = new ImageView(image);

final ImageView secondSprite = new ImageView(image);

sprite.setViewport(new Rectangle2D(80, 635, 75, 75));

sprite.setFitHeight(100);

sprite.setPreserveRatio(true);

sprite.setTranslateX(100);

sprite.setTranslateY(100);

secondSprite.setViewport(new Rectangle2D(0, 110, 45, 50));

secondSprite.setFitHeight(100);

secondSprite.setPreserveRatio(true);

secondSprite.setTranslateX(200);

secondSprite.setTranslateY(100);

Rotate rotator1 = new Rotate(30, 50, 30);

sprite.getTransforms().add(rotator1);

Rotate rotator2 = new Rotate(90, 0, 0);

secondSprite.getTransforms().add(rotator2);

HBox layout = new HBox();

layout.getChildren().addAll(sprite, secondSprite);

Scene theScene = new Scene(layout, 600, 400);

primaryStage.setTitle("Rotating Sprites");

primaryStage.setScene(theScene);

primaryStage.show();

School of Computer Science, Physics and Mathematics

Essential JavaFX 10(39)

In graphics

School of Computer Science, Physics and Mathematics

Essential JavaFX 11(39)

Animations

◮ There are a number of built in animation classes in JavaFX.
◮ This in contrast to Swing, where this was basically left to the

programmer.

◮ The animation functionality lies in the Animation package,
with several classes.

◮ Two high level categories can be seen:
◮ Transitions
◮ Timeline animation

◮ These can be further divided into different classes.

School of Computer Science, Physics and Mathematics

Essential JavaFX 12(39)



Transitions

◮ The main idea behind transitions is to have a change of state
over time.

◮ This is done via an internal timeline, in contrast to other
animations.

◮ The Transition class is abstract and has several concrete
sub classes.

◮ FadeTransistion
◮ RotateTransition
◮ PathTransition

◮ All of them work on Nodes, so most elements can be used.
◮ Images, text and so on.

◮ All transitions set a duration for the internal timeline.

School of Computer Science, Physics and Mathematics

Essential JavaFX 13(39)

FadeTransistion

◮ The FadeTransistion makes it possible to fade a node.
◮ For the node to fade, the start and end values are set.

◮ A double going from 0.0 (invisible) to 1.0 (fully visible).
◮ A duration is set for the entire fade, but also an increment for

each step in the fade.
◮ This is also a double from 0.0 to 1.0.

◮ It is also possible to set it to cycle and to reverse when at the
end.

◮ When the transition is set, the play() method will start the
animation.

School of Computer Science, Physics and Mathematics

Essential JavaFX 14(39)

In code

final Image theEmperor = new Image(getClass()

.getResourceAsStream("darthsidious.png"));

final ImageView theImperialView = new ImageView(theEmperor);

FadeTransition fadeToBlack =

new FadeTransition(Duration.millis(4000), theImperialView);

fadeToBlack.setFromValue(0.0);

fadeToBlack.setToValue(1.0);

fadeToBlack.setByValue(0.3);

fadeToBlack.setCycleCount(Animation.INDEFINITE);

fadeToBlack.setAutoReverse(true);

fadeToBlack.play();

Scene scene = new Scene(new Group(theImperialView), 400, 600);

primaryStage.setTitle("Wipe the out. All of them!");

primaryStage.setScene(scene);

primaryStage.show();

School of Computer Science, Physics and Mathematics

Essential JavaFX 15(39)

In graphics

School of Computer Science, Physics and Mathematics

Essential JavaFX 16(39)



RotateTransition

◮ We previously saw how it was possible to rotate an image (or
any other node) using the Rotate class.

◮ It is possible to add a rotation animation by repeatedly
updating the values, but it is easier to use the
RotateTransition class.

◮ The object of RotateTransition is given values for:
◮ Angle – the complete change from the initial state, 360 for a

full circle (obviously).
◮ A cycle count for the number of times it needs to be done.

◮ In the example we also set the interpolation.
◮ This can be done using either a separate class or as a method

to the transition.
◮ It decides the start and end movement of the transition.

School of Computer Science, Physics and Mathematics

Essential JavaFX 17(39)

The code

final Image itsMe = new Image(getClass()

.getResourceAsStream("jag.png"));

final ImageView showMe = new ImageView(itsMe);

RotateTransition snurr =

new RotateTransition(Duration.millis(3000), showMe);

snurr.setByAngle(360);

snurr.setCycleCount(Animation.INDEFINITE);

snurr.setAutoReverse(true);

snurr.setInterpolator(Interpolator.EASE_BOTH);

snurr.play();

Scene scene = new Scene(new Group(showMe), 500, 400);

primaryStage.setTitle("Hello World!");

primaryStage.setScene(scene);

primaryStage.show();

School of Computer Science, Physics and Mathematics

Essential JavaFX 18(39)

In graphics

School of Computer Science, Physics and Mathematics

Essential JavaFX 19(39)

Putting it together

◮ To make an even more controlled animation it is also
possible to inherit from Transition.

◮ In this case we will be sending an ImageView to the
transition class.

◮ Called SpriteAnim since we are animating sprites.

◮ In our sprite animation class we will shift the viewport of the
ImageView to simulate movement.

◮ The main class will still set and populate the original image
and view.

◮ This might not be the “best” way, but still quite efficient.

◮ Animation is set to infinite, but it is possible to start and stop
as well as pause an animation in code.

School of Computer Science, Physics and Mathematics

Essential JavaFX 20(39)



The interpolate method

◮ In our sprite animation class it is vital to override the
interpolate method.

◮ This is the method that will be executed for every new frame.
◮ It is called more often than the duration is set for, though, so

it needs to be guarded.
◮ This is because this method should be called for every screen

redraw.
◮ In our example we use the input value to the method for

calculating the frame number.
◮ If it has changed from previous call, that is – the duration is at

end – then it will update.

◮ The interpolation type is set to LINEAR since we do not want
it to slow down between changes.

School of Computer Science, Physics and Mathematics

Essential JavaFX 21(39)

The SpriteAnim class
public class SpriteAnim extends Transition {

ImageView spriteView;

int x_coord, y_coord, width, height;

int count=0;

int lastIndex;

SpriteAnim(ImageView theIV, int x, int y, int w, int h, int l){

spriteView = theIV;

x_coord = x; y_coord = y; width = w; height = h;

count = l;

setCycleDuration(Duration.millis(1000));

setInterpolator(Interpolator.LINEAR);

}

@Override

protected void interpolate(double d) {

final int index = Math.min((int) Math.floor(d*count),count-1);

if(index != lastIndex)

{

if(x_coord < width*(count-1))

x_coord = x_coord + width;

else

x_coord=0;

spriteView.setViewport(

new Rectangle2D(x_coord, y_coord, width, height));

lastIndex = index;

}

}

}
School of Computer Science, Physics and Mathematics

Essential JavaFX 22(39)

The main class

public void start(Stage primaryStage) {

final Image theImage = new Image(getClass()

.getResourceAsStream("lukeskywalker.png"));

final ImageView theView = new ImageView(theImage);

theView.setViewport(new Rectangle2D(0, 50, 50, 50));

theView.setFitHeight(100);

theView.setPreserveRatio(true);

final Animation anim = new SpriteAnim(theView, 0, 50, 50, 50, 9);

anim.setCycleCount(Animation.INDEFINITE);

anim.play();

Scene scene = new Scene(new Group(theView), 300, 250);

primaryStage.setTitle("Sprite 2");

primaryStage.setScene(scene);

primaryStage.show();

}

School of Computer Science, Physics and Mathematics

Essential JavaFX 23(39)

In graphics

School of Computer Science, Physics and Mathematics

Essential JavaFX 24(39)



PathTransition

◮ It is also possible to set up a transition over a path.
◮ The path will then be defined by using a number of path

classes like MoveTo, LineTo and CubicCurveTo.
◮ In the example we only set a path and let our node move

over it, put it is possible to make it follow a mouse click, a
key press or anything else.

◮ Also notice that the previous transition is still in effect.
◮ When the path is set, a PathTransition object must be

created taking the path as a parameter.
◮ As well as the node to animate.

◮ For the transition the orientation is set, in this case to NONE

which means that it will only follow the path.

School of Computer Science, Physics and Mathematics

Essential JavaFX 25(39)

The code

final Image theImage = new Image(getClass().getResourceAsStream("lukeskywalker.png"));

final ImageView theView = new ImageView(theImage);

theView.setViewport(new Rectangle2D(0, 50, 50, 50));

theView.setFitHeight(100);

theView.setPreserveRatio(true);

final Animation anim = new SpriteAnim(theView, 0, 50, 50, 50, 9);

anim.setCycleCount(Animation.INDEFINITE);

anim.play();

PathTransition thePath = new PathTransition();

Path path = PathBuilder.create()

.elements(new MoveTo(50, 60),

new LineTo(600, 60)

).build();

thePath = PathTransitionBuilder.create()

.duration(Duration.seconds(5))

.path(path)

.node(theView)

.orientation(OrientationType.NONE)

.cycleCount(Timeline.INDEFINITE)

.autoReverse(true)

.build();

thePath.play();

School of Computer Science, Physics and Mathematics

Essential JavaFX 26(39)

In graphics

School of Computer Science, Physics and Mathematics

Essential JavaFX 27(39)

Another example

◮ In the following a more complex path is set.
◮ Borrowed from the Internet. . .

◮ This example sets the orientation to
ORTHOGONAL_TO_TANGENT which will make the image turn at
curves.

◮ Also notice how we set a background by applying a style to
the root.

◮ This style sets the image to stretch to fill the background.
◮ It also centres it.

School of Computer Science, Physics and Mathematics

Essential JavaFX 28(39)



The code

public void start(Stage primaryStage) {

PathTransition pathTransition = new PathTransition();

Path path = PathBuilder.create()

.elements(

new MoveTo(50, 50),

new LineTo(800, 400),

new LineTo(50, 600),

new CubicCurveTo(580, 0, 580, 120, 200, 120),

new CubicCurveTo(0, 120, 0, 240, 380, 240)

).build();

path.setVisible(false);

ImageView tie = new ImageView(new Image(getClass().getResourceAsStream("tiefighter.png")));

tie.setFitWidth(150.0);

tie.setPreserveRatio(true);

pathTransition = PathTransitionBuilder.create()

.duration(Duration.seconds(10))

.path(path)

.node(tie)

.orientation(OrientationType.ORTHOGONAL_TO_TANGENT)

.cycleCount(Timeline.INDEFINITE)

.autoReverse(true)

.build();

School of Computer Science, Physics and Mathematics

Essential JavaFX 29(39)

The code, cont.

primaryStage.setTitle("TIE Fighter");

StackPane root = new StackPane();

String image = getClass().getResource("deathstar.jpg").toExternalForm();

root.setStyle("-fx-background-image: url(’" +

image

+ "’); -fx-background-position: center center; -fx-background-repeat: stretch;");

root.setAlignment(Pos.TOP_LEFT);

root.getChildren().addAll(tie, path);

primaryStage.setScene(new Scene(root, 1024, 768));

primaryStage.show();

pathTransition.play();

School of Computer Science, Physics and Mathematics

Essential JavaFX 30(39)

In graphics

School of Computer Science, Physics and Mathematics

Essential JavaFX 31(39)

Timeline animations

◮ The other way of creating animations is to use the Timeline

class.
◮ It works similar to cartoons, you define key frames between

which the node moves.
◮ In order for this to work, the properties of a node is update.

◮ Properties are special values that update using binding.
◮ We will return to these at a later lecture.

◮ The methods seen before for cycles and repeat are available
for timelines as well.

◮ It is also possible to pause and re-start animations, making
them good for sprites as well.

School of Computer Science, Physics and Mathematics

Essential JavaFX 32(39)



Key frames and values

◮ When defining a timeline, two things need to be defined:
◮ Key frames – each frame defines a time for the frame.
◮ Key values – the value for the frame to update.

◮ Any number of frames can be defined with different values.
◮ JavaFX calculates the change in between.
◮ In the example, only the x coordinate is changed, but any

other property can be changed as well.

School of Computer Science, Physics and Mathematics

Essential JavaFX 33(39)

The code

public void start(Stage primaryStage) {

final Image theXwing = new Image(getClass().getResourceAsStream("xwing.png"));

final ImageView xwingShow = new ImageView(theXwing);

Timeline time = new Timeline();

time.setCycleCount(Animation.INDEFINITE);

time.setAutoReverse(true);

time.getKeyFrames().addAll(

new KeyFrame(Duration.ZERO,

new KeyValue(xwingShow.translateXProperty(), -500)),

new KeyFrame(Duration.millis(2000),

new KeyValue(xwingShow.translateXProperty(), 1000)));

Scene scene = new Scene(new Group(xwingShow), 1000, 500);

time.play();

primaryStage.setTitle("X-Wing");

primaryStage.setScene(scene);

primaryStage.show();

}

School of Computer Science, Physics and Mathematics

Essential JavaFX 34(39)

In graphics

School of Computer Science, Physics and Mathematics

Essential JavaFX 35(39)

More graphics capabilities

◮ One of the more prominent additions to HTML5 is the
canvas.

◮ In essence a drawing area defined in HTML.
◮ Shapes and images are drawn using JavaScript.

◮ One of the goals for JavaFX is to be a major player when it
comes to Rich Internet Applications.

◮ To make the transition from HTML to JavaFX easier (and more
worthwhile), JavaFX 2.2 added its own canvas.

◮ Very much like the HTML5 version.

School of Computer Science, Physics and Mathematics

Essential JavaFX 36(39)



Drawing

◮ The usage of the JavaFX canvas is similar to that of HTML5.
◮ Two steps are needed:

◮ First the Canvas is defined with size.
◮ Then a GraphicsContext is extracted from the canvas.

◮ This is exactly how it is done in HTML5 as well.
◮ When the context is extracted, it is possible to use drawing

methods on it.
◮ In large they follow the same names as for HTML5.

◮ The example shows the parts that were possible to copy
directly from an HTML5 lecture in another course.

School of Computer Science, Physics and Mathematics

Essential JavaFX 37(39)

The code
final Canvas theCanvas = new Canvas(500, 375);

final GraphicsContext theContext = theCanvas.getGraphicsContext2D();

for (double x = 0.5; x < 500; x += 10) {

theContext.moveTo(x, 0);

theContext.lineTo(x, 375);

}

for (double y = 0.5; y < 375; y += 10) {

theContext.moveTo(0, y);

theContext.lineTo(500, y);

}

theContext.stroke();

theContext.beginPath();

theContext.moveTo(0, 40);

// lines omitted

theContext.lineTo(60, 375);

theContext.lineTo(55, 370);

Group root = new Group();

root.getChildren().add(theCanvas);

Scene scene = new Scene(root, 500, 375);

primaryStage.setTitle("See my canvas");

primaryStage.setScene(scene);

primaryStage.show();

School of Computer Science, Physics and Mathematics

Essential JavaFX 38(39)

In graphics

School of Computer Science, Physics and Mathematics

Essential JavaFX 39(39)

More?

◮ There is plenty more to learn about animation in JavaFX.
◮ With this, however, you will be well on your way to master it.
◮ There is plenty of additional information on the Internet,

though not as much as one would like.
◮ This lecture has only studied static images and animations

based on images – further down the lecture series, we will be
looking at movies as well!

School of Computer Science, Physics and Mathematics

Essential JavaFX 40(39)


